科普:聊聊-174dBm/Hz的来龙去脉

云脑智库 2022-10-18 00:00

在无线通信计算接收灵敏度的时候,我们会用到-174dBm/Hz这个数字,他代表的意义究竟是什么呢?


【接收机三要素】 热噪声(称作kTB)+接收机系统噪声系数+从接受的信号中提取有用的信息所需的信噪比。接收机灵敏度定义了接收机可以接收到的并仍能正常工作的最低信号强度。灵敏度可用功率来表示,单位为dBm(通常是一个绝对值比较大的负dBm值),它也可以用场强来表示(mV/m)。   

【接收灵敏度计算位置】虽然还没有统一规定,但把接收系统的灵敏度定义在接收天线的输出端口是常用的惯例。如果灵敏度定义在此点,在计算进入接收系统的信号功率时,接受天线的增益可以加到接收天线的信号功率上去。这就意味着 在计算接收系统灵敏度时,必须考虑连接天线和接收机用的电缆损耗和前置放大器以及功分器的影响。







让我们从绝对零度说起。


在信号处理系统中,我们经常会听到噪声温度这个概念,而且噪声温度的量纲也是K(凯氏温度), 那噪声温度是什么意思呢?为什么会用温度来衡量噪声的大小?


K和℃的换算关系:

0K=-273.15


我们常说的绝对零度就是−273.15℃,即0K。

注意,此零度,是温度,不是无人机零度。


  首先,要明确的一点是:噪声温度其实就是噪声功率的一种表示方法,至于为什么要用温度来表示功率大小?直接用功率不好么?


  要解释噪声温度,就要从噪声说起。


  根据噪声产生的机理,大致可以分为五大类:

(1)热噪声(Thermal Noise),

(2)散粒噪声(Shot Noise),

(3)闪烁噪声(Flicker Noise),

(4)等离子体噪声(Plasma Noise),

(5)量子噪声(Quantum Noise)。


  热噪声是最基本的一种噪声,可以说是无处不在的。热噪声又称为Johanson或Nyquist噪声,是由电子的热运动产生的。在绝对零度(0 K)以上,就会存在自由电子的热运动。因此,现实中的所有器件,都会产生热噪声。热噪声的功率谱密度不随频率变化,称为白噪声,又因服从Gauss概率密度分布,所以又称为高斯白噪声。

    又是高斯,又是白噪声。




PDF地址:

https://wise.xmu.edu.cn/_data/2016/07/28/c6a3daf3_e3c2_49e3_9aad_bf95fa4446bf/%E6%AD%A3%E5%A4%AA%E5%88%86%E5%B8%83%20final.pdf

曲线:



    下面这几张图都很漂亮,凡尘都舍不得删除,可以帮助理解。宇宙热噪声。






  将一个电阻置于温度为T (开尔文温度)的环境中,电阻中的自由电子随机运动,动能与温度T成正比。电子的随机运动会产生小的随机电压波动,此时电阻相当于一个噪声源。随机电压的有效值为



  讲到这里,就得提一个关键的数字:-174dBm/Hz。什么意思呢?


在温度为290K,即16.85℃时,此时噪声的功率谱密度为:

对该值取个dB对数


10∗log10(kT0)

=10∗log10(1.38064852∗10^23∗290) 

=−203.98W/Hz 

=−173.98dBm/Hz

≈−174dBm/Hz 


因此,-174dBm/Hz是噪声的功率谱密度,当带宽为1Hz时,噪声功率为-174dBm,但噪声功率并不是噪底,因此很多人说-174dBm就是噪底这种说法其实是有问题的。


凡尘说:这里有个疑问,如果温度变化了呢?难道这个值也是变化么?

实际计算中,一般没有改变-174这个值对接收灵敏度的影响。


10∗log10(kT0)

=10∗log10(1.38064852∗(10^(-23))∗290) 

=−203.98W/Hz 

=−173.98dBm/Hz

≈−174dBm/Hz 


注意,这里默认调用了:


10*log10为底的功率对数表




补充:

ratio
dB增益或损耗
5/8-2
损耗
5/8*9/8=45/64-1.5
损耗
4/5-1
损耗
8/9
-0.5
损耗
1
0

9/8
0.5
增益
5/4
1
增益
8/5*8/9=64/45
1.5
增益
8/5
2
增益


以下为约数

(4/5)^6=0.25

(5/4)^6=4

(9/8)^2=5/4

(5/4)^2=8/5


如此

-1dB=10*log(4/5)

-6dB=6*10*log(4/5)=10*log((4/5)^6)


注意,此处是10*log10。


区别:在无线电磁波传输损耗模型中,是20*log10。


现在都有计算器,excel,matlab,这些技巧都几乎没有用武之地了。

但是,掌握一些简单运算的规律,在某些场景,简单分析问题,还是有一定帮助。


首先,对数的发明,是非常杰出的,非常大的程度上简化了对人脑和手工计算的能力要求。

16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数.在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔。  纳皮尔当时是一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数。

                           


具体,来,上数字。

首先,发射功率1w,是30dBm。

计算公式:

30dBm=10*log(1w/1mw)

这是基准。


所以,是相对1mw的对数值。dBm的m也是毫的意思。

继续,

0dBm=10*log(1mw/1mw)

这也是基准。



对数值
线性值
计算过程
-100dBm100飞瓦10*log(10^-13w/1mw)
-90dBm1皮瓦10*log(10^-12w/1mw)
-60dBm1纳瓦10*log(10^-9w/1mw)
-30dBm1微瓦10*log(10^-6w/1mw)
-20dBm
10微瓦10*log(10^-5w/1mw)
-10dBm
100微瓦10*log(10^-4w/1mw)
0dBm
1毫瓦10*log(10^-3w/1mw)
10dBm
10毫瓦10*log(10^-2w/1mw)
20dBm
100毫瓦10*log(10^-1w/1mw)
30dBm
1瓦10*log(1w/1mw)
33dBm
2瓦10*log(2*1w/1mw)
35dBm
3瓦10*log(3*1w/1mw)
37dBm
5瓦10*log(5*1w/1mw)
40dBm
10瓦10*log(10*1w/1mw)
43dBm
20瓦10*log(2*10*1w/1mw)
46dBm
40瓦10*log(4*10*1w/1mw)
50dBm
100瓦10*log(10*10*1w/1mw)




其实,还有一个dBw的概念,其的基准是1w。整体比dBm大30。读者可以自行推导。


对数,真的是科学界有效的发明之一,极大简化了人类的记忆负担和计算负担。


就像是阿拉伯数字,相对中文的数字一样。

中国古数学发展极慢,是不是和这个也有一定影响呢。

所以,这个数值其实是温度和噪声的折算关系。

一般,假定了大约17摄氏度为参考。


接上一次的疑问,那么,不同的温度,-174dBm/Hz还能用么?

口说无凭,直接算起。


从上图可见,

(1)随着温度降低,噪声温度降低。所以,在低温下,通信接收机的性能会变好一些。

(2)大约从-73摄氏度到127摄氏度的范围,这个值变化了大约3dB。

再看-40摄氏度,到+60摄氏度,那么,这个值大约变化了1.5dB。而相对17摄氏度,

(1)60摄氏度高温下,相对17摄氏度,恶化了0.5dB,

(2)低温下,相对17摄氏度,优化了1dB。

所以,一般用17摄氏度来代替整体的噪声温度,是相对合理的简化做法。

所以,在普通无人机的应用中,这些温度范围已经足够。

但是,我们想想卫星,是不是就有一种:

一天过冬夏,冰火两重天。

身临其境的感觉。

那么,公式中的290K是怎么来的?为什么是290k呢?

10∗log10(kT0)

=10∗log10(1.38064852∗(10^(-23))∗290) 

=−203.98W/Hz 

=−173.98dBm/Hz

≈−174dBm/Hz 


1.第一种解释:


太阳表面温度6000K,

日地距离,

太阳半径


即可计算得到这一模型下地球的平均温度约为290K,即17℃,在数量级上是正确的。

实际上地球的平均温度是15℃左右。

【凡尘说:所以,有时候是近似,但差别很小】

10∗log10(kT0)

=10∗log10(1.38064852∗(10^(-23))∗288) 

=−204.01W/Hz 

=−174.01dBm/Hz


也就是说,17摄氏度与15摄氏度,其噪声功率谱密度差为:

−173.98)-(−174.01)=0.03


所以,几乎可以忽略不计。


1.1 计算过程

我们还可以用一个模型来粗略地估计地球表面的平均温度,为了让推导不会因为这里地方太小写不下,我们何不做一些离谱的假设:地球和太阳都是黑体,地球能吸收所有太阳传播到地球表面的辐射,地球向外发出辐射时不会受到大气等产生的阻碍,地球是一个理想的导热物体,即地球各部分的温度时刻保持一致。


下面我们开始推导,注意到,太阳辐射的能量并不是全部都能够到达地球,因为假设太阳均匀地辐射,那么辐射到达日地距离时是均匀分布在一个半径为的球面上的,而地球在这一球面上只有小小的面积

(对数值的补充说明,不感兴趣的话可以跳过:这一面积不是地球被太阳照亮部分的表面积,因为我们要算功率,应该取垂直于太阳光的截面面积),

这部分面积上的太阳辐射应等于地球向外的辐射,即


根据热辐射的规律,黑体单位面积辐射的热功率正比于绝对温度(注:即摄氏度加上273.15)的四次方,于是上式化为


2.第二种解释:

为实现比较标准化,噪声因子在290K的标准温度下进行测量,选择这一温度值主要是依据哈拉尔·弗里斯 (Harald Friis) 于20世纪30年代在贝尔电话实验室开展的开创性研究结果。

凡尘:第一次看到三棱镜,觉得神奇。原来宇宙是那么奇妙。

而如今,又学习到了电磁的噪声,竟然与温度相关。

初想起来觉得不可思议.

仔细想想,其实也对,这宇宙里的运动,不就是应该会产生能量向外传播的么,运动不就是会产生热噪声么。

在道理上,宇宙和人是一样的。

原来,物理学,是相通的,电磁学和宇宙天文学,产生了奇妙的联系。

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 53浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 122浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 186浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 101浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 339浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 182浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 198浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 437浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 399浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 112浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 41浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦