什么是波特图?为什么要学习波特图呢?

面包板社区 2022-10-17 19:59
为什么要学习波特图呢?
波特图将传输函数和频率响应定性的联系起来了,通过波特图的绘制,可以了解极点和零点是怎么影响频率响应的幅度和相位,进而影响电路的性能。
换成人话,可以这样说。
呀,这个电路不稳定啊。画画波特图,噢,原来相位裕度接近为0啊。这个可以看看,电路上哪些因素会影响极点零点的位置,调整一下,就能改进电路的稳定性。

什么是波特图?
波特图也是根据人名命名的,它是出自贝尔实验室,由荷兰裔科学家 Hendrik Wade Bode在1930年发明的。Bode当时需要设计用于电话网络的放大器,放大器带有负反馈。为了能够快速了解放大器保持绝对稳定所需的增益裕度和相位裕度,Bode开发了波特图。

假设一系统为线性时不变系统,传输函数为H(s)。则波特图有两副图,幅频图和相频图,分别对应增益和相位。

幅频图是|H(s=jw)|随频率的函数,其横轴为频率,用对数尺度表示;纵轴为功率的dB值,即20log10|H|。
相频图是arg(H(s=jw))随频率的函数,其横轴为频率,用对数尺度表示;纵轴的单位一般为度,为线性值。

怎么画波特图?
画幅频图时,遵循以下规则:
(1) 当频率w经过极点时,|H(jw)|的斜率变为-20dB/dec,也就是以频率变化10倍,|H(jw)|变小20dB;
(2) 当频率w经过零点时,|H(jw)|的斜率变为20dB/dec,也就是以频率变化10倍,|H(jw)|变大20dB;
(3) 图在起始点时的增益值,可以计算频率的下限值对应的|H(jw)|;
  •      如果零点没有在原点处的时候,可以将w=0代入|H(jw)|,计算其在DC处的增益;
  •     如果有零点处在原点处,则可以选择一个靠近w=0的值,比如说w=1作为|H(jw)|的初始值。零点在原点,即w=0时,|H(jw)|=0,因为纵轴是对数值,所以不可能在图中包括|H(jw)|=0的值。
(4) 图在起始点的斜率,取决于在w小于起始点处零点和极点的个数,然后按照(1)和(2)的规则计算;如果在w小于起始点处无零点和极点,则初始斜率为0。

画相频图时,遵循以下规则:
(1) 假设极点为wp,即其则曲线在0.1wp处开始变化,在wp处变化-45度,在10wp处变化接近于-90度。
(2) 假设零点为wz,则曲线在0.1wz处开始变化,在wz处变化45度,在10wz处变化接近于90度。

看到电路,快速画出波特图,了解系统的稳定性
如下图所示,是一个通用的反馈系统框图。
当K等于0时,没有反馈,此时系统为开环系统;
当K不等于0时,此时系统为闭环系统。
该系统的传输函数为:
其中,KH(s)称为环路增益。
假设上面的系统的输入为正弦信号,则s=jw。这个假设是合理的,因为任何信号都可以分解成多个正弦函数之和。
所以:

由上面等式可知,当KH(jw)=-1时,Y/X-->无穷大,即使X很小很小,也会导致很大的Y输出,即系统处于振荡状态,不稳定。
所以为了保证系统稳定,需要在任何频率处都不能满足KH(jw)=-1的条件,即|KH(jw)|=1&arg(H(jw))=-180度。

那如果是|KH(jw)|>1&arg(H(jw))=180度呢?
因为每经过一次环路,信号都会被进一步放大,因为反相,所以叠加出来的信号会变得越来越大。
所以当
|KH(jw)|>=1
arg(KH(jw))=180度,
系统都处于一个不稳定的状态。

用图形示意,可能会比较直观。
增益等于0dB对应的频率,称为gain crossover frequency.
相位等于-180度对应的频率,称为phase crossover frequency.
若系统稳定,则要求gain crossover frequency

举两个例子,解释一下,如何从电路到波特图,再分析系统的稳定性。
所以,如果电路只包含一个极点的话,那么这个系统肯定是稳定的。

可以看到,系统中相应部件对最后波特图的影响,比如说,原来系统处于不稳定的状态,但是当降低K的值时,系统则会变稳定。

增益裕度和相位裕度
增益裕度和相位裕度都是衡量系统稳定程度的方法。

在相位图上,找到相位达到-180度时对应的频率,然后计算该频率对应的幅度值。如果|KH(jw)|180>=1,则该系统不稳定;如果|KH(jw)|180<1,则系统稳定。
而20log|KH(jw)|180即为增益裕度,代表相位达到-180度时对应的幅度值与0dB的距离。

在波特增益图上,找到|KH(jw)|=1的频率,称为w0dB,然后找到该频率下KH(jw)w0dB的相位。
如KH(jw)w0dB的相位大于-180度,则系统稳定。
KH(jw)w0dB的相位与-180度之间的差,称为相位裕度。
一般取相位裕度为60度左右,此时任务系统处于一比较好的稳定状态。


不想自己手工画波特图,怎么办?
计算机已如此普及,当然可以不用手工画啦。matlab中有现成的函数。

还有什么可以用到波特图呢?
那就是锁相环。

当环路滤波器只有一个电容时,如下图所示。
可以看到环路中只有两个零极点,所以相位图为接近-180度的一条直线,因此其总相位裕度基本为0,表面这个锁相环是不稳定的。

解决问题的一个办法是给电容加入一个串联电阻R,这样就引入了一个零点,从而对环路进行相位补偿。

在实际的应用中,需要额外增加电阻电容低通滤波器,以滤掉一些高频噪声和电压波动。其中最简单的一种是在上述电容电阻两端再加一个电容C1,通常C1远小于积分电容C0,如下图所示。
这就是我们常用的环路滤波器的结构。

参考文献:
https://zh.wikipedia.org/wiki/%E6%B3%A2%E5%BE%B7%E5%9C%96#%E5%A2%9E%E7%9B%8A%E8%A3%95%E5%BA%A6
https://www.sciencedirect.com/topics/engineering/phase-margin
https://web.njit.edu/~levkov/classes_files/ECE232/Handouts/Frequency%20Response.pdf
https://www.mathworks.com/help/control/ref/lti.bode.html
https://www.rohde-schwarz.com/us/products/test-and-measurement/oscilloscopes/educational-content/understanding-bode-plots_254514.html
https://web.mit.edu/2.14/www/Handouts/PoleZero.pdf
张刚,CMOS集成锁相环电路设计

声明:本文经公众号“加油射频工程师”授权转载,版权归原作者所有。转载仅为学习参考,不代表本号认同其观点,本号亦不对其内容、文字、图片承担任何侵权责任。
面包板社区 面包板社区——中国第一电子人社交平台 面包板社区是Aspencore旗下媒体,整合了电子工程专辑、电子技术设计、国际电子商情丰富资源。社区包括论坛、博客、问答,拥有超过250万注册用户,加入面包板社区,从菜鸟变大神,打造您的电子人脉社交圈!
评论
  • 【富芮坤FR3068x-C】+开发环境疑问非常荣欣参加了这次《富芮坤FR3068x-C》评测活动,在搭建开发环境时,本人就遇到很大问题,主要有3个。第1个问题:本人按照《FR306x开发环境说明书》中的1章安装软件,keil5.36版本以上,并且打开sdk中uart工程,按照要求设置了Device配置如下: ARM Compiler选项链接文件配置但是编译结果如下:有23个warning,都是连接脚本中找不到,请问这样工程是否有问题?第2个问题:按照《FR306x开发环境说明书》中要求,需要电脑
    shenwen2007_656583087 2024-12-17 00:59 110浏览
  • 2003年买的电子管功放机,俗称胆机,坏过几次,咨询厂家,购买零件,自己修理,干中学,学中干。有照片记录的是2011年3月,一天,发现整流管比之前红亮了很多,赶紧关机,想找原因,反反复复折腾了几个月,搞好了。就此,还在网上论坛咨询和讨论,欧博Rererence 5.0电子管发粉红色光,何故?-『胆艺轩音响技术论坛』-胆艺轩[Tubebbs]论坛 发表于2011-5-7同时与厂家联系得到支持,见文:29kg胆机修理之联想——环保简易,做到真难!-面包板社区 发表于2011-6-13又继续使用了多年
    自做自受 2024-12-17 22:18 152浏览
  • 上汽大通G90是一款集豪华、科技与舒适于一身的中大型MPV,号称“国产埃尔法”。在国内市场,作为“卷王”的G90主要面向中大型MPV市场,满足家庭出行、商务接待和客运租赁等多元化场景需求,在国内市场上取得了不错的销售成绩。在海外市场,上汽大通G90也展现出了强大的竞争力,通过技术创新和品质提升,上汽大通的产品在国际市场上获得了广泛认可,出口量持续增长,如果你去过泰国,你就应该可以了解到,上汽的品牌出海战略,他们在泰国有建立工厂,上汽大通G90作为品牌的旗舰车型之一,自然也在海外市场上占据了重要地
    lauguo2013 2024-12-18 10:11 76浏览
  • 随着国家对环保要求日趋严格。以铅酸电池为动力的电动自行车、电动摩托车,将逐渐受到环保管制。而能量密度更高的磷酸铁锂等锂电池成为优先的选择,锂电池以其高能量密度、快速充电、轻量化等特点,已经大量应用于电动车领域。光耦在锂电池系统PMU中的应用,能提供完善的安全保护和系统支撑。BMS和电池被封装成安装所需要的尺寸外形,高速的CAN以及RS-485等通信总线,被应用在与控制器、中控之间通信。晶台光耦,被广泛应用于通信隔离、双MCU系统应用地隔离、电机驱动隔离等。下图例举在电动摩托车上的应用中包含的部件
    晶台光耦 2024-12-17 13:47 57浏览
  •   前言  作为一名电子专业的学生,半导体存储显然是绕不过去的一个坎,今天聊一聊关于Nand Flash的一些小知识。  这里十分感谢深圳雷龙发展有限公司为博主提供的两片CS创世SD NAND的存储芯片,同时也给大家推荐该品牌的相关产品。  一、定义  存储芯片根据断电后是否保留存储的信息可分为易失性存储芯片(RAM)和非易失性存储芯片(ROM)。  非易失性存储器芯片在断电后亦能持续保存代码及数据,分为闪型存储器 (Flash Memory)与只读存储器(Read-OnlyMemory),其中
    雷龙发展 2024-12-17 17:37 63浏览
  •  2024年下半年,接二连三的“Duang Duang”声,从自动驾驶行业中传来:文远知行、黑芝麻、地平线、小马智行等相继登陆二级市场,希迪智驾、Momenta、佑驾等若干家企业在排队冲刺IPO中。算法模型的历史性迭代与政策的不断加码,让自动驾驶的前景越来越清晰。由来只有新人笑,有谁听到旧人哭。在资本密集兑现的自动驾驶小元年里,很多人可能都已经遗忘,“全球自动驾驶第一股”的名号,曾经属于一家叫做图森未来的公司。曾经风光无两的“图森”,历经内讧与退市等不堪往事之后,而今的“未来”似乎被锚
    锦缎研究院 2024-12-18 11:13 71浏览
  • 车载光纤通信随着ADAS(高阶驾驶辅助系统)、汽车智能网联、V2X和信息娱乐技术的不断发展,车载电子系统和应用数量迅速增加。不断增长的车内传输数据量对车载通信网络造成了巨大的数据带宽和安全性需求,传统的车载总线技术已经不能满足当今高速传输的要求。铜缆的广泛使用导致了严重的电磁干扰(EMI),同时也存在CAN、LIN、FlexRay等传统总线技术不太容易解决的问题。在此背景下,车载光纤通信技术逐渐受到关注和重视,除了大大提高数据传输率外,还具有抗电磁干扰、减少电缆空间和车辆质量等优点,在未来具有很
    广电计量 2024-12-18 13:31 63浏览
  • 1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线
    锦正茂科技 2024-12-17 10:40 125浏览
  • 近年来,云终端凭借便捷、高效、高性价比的优势正逐步在各行各业渗透。研究机构IDC的数据显示,2024上半年,中国云终端市场总体出货量达到166.3万台,同比增长22.4%,销售额29亿元人民币,同比增长24.9%,均超预期。紫光展锐积极携手各大合作伙伴,共同打造云端生态,大力推动云终端在政企、金融类等领域应用落地。 云终端增长势头良好 两大应用场景被看好云电脑将传统个人电脑的硬件资源和软件应用虚拟化,并通过网络提供给用户。这种模式的核心在于:用户不需要高性能的本地硬件,仅通过互联网连接
    紫光展锐 2024-12-16 18:11 119浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-18 14:02 70浏览
  • 以人形机器人和通用人工智能为代表的新技术、新产品、新业态蓬勃发展,正成为全球科技创新的制高点与未来产业的新赛道。01、Optimus-Gen 2来了,人形机器人管家还远吗?没有一点点防备,特斯拉人形机器人Optimus-Gen 2来了!12月13日,马斯克于社交媒体上公布了特斯拉第二代人形机器人的产品演示,并预计将于本月内发布。在视频中,Optimus-Gen 2相比上一代有了大幅改进,不仅拥有AI大模型的加持,并在没有其他性能影响的前提下(相比上一代)将体重减少10kg,更包含:由特斯拉设计的
    艾迈斯欧司朗 2024-12-18 12:50 71浏览
  • 户外照明的“璀璨王者”,艾迈斯欧司朗OSCONIQ® C3030降临啦全球领先的光学解决方案供应商艾迈斯欧司朗(瑞士证券交易所股票代码:AMS)近日宣布,推出新一代高性能LED——OSCONIQ® C 3030。这款尖端LED系列专为严苛的户外及体育场照明环境而设计,兼具出色的发光强度与卓越的散热效能。其支持高达3A的驱动电流及最大9W的功率输出,以紧凑扁平封装呈现卓越亮度和可靠性,确保高强度照明持久耐用且性能出众。应用领域01体育场及高杆照明OSCONIQ® C 3030以卓越的光通量密度、出
    艾迈斯欧司朗 2024-12-18 14:25 75浏览
  • 随着现代汽车工业的不断发展,驾驶安全与舒适性成为消费者关注的焦点。在这个追求极致体验的时代,汽车ASF随动转向LED大灯技术应运而生,它不仅代表了车辆操控辅助系统的最新进展,更是对未来智能安全出行愿景的一次大胆探索。擎耀将深入探讨ASF随动转向技术的原理及落地方案,旨在为汽车LED照明升级行业提供一份详尽且实用的参考。首先,ASF随动转向技术不是什么高精尖的技术,一般的汽车大灯制造厂商都可能完成,通过软硬件的逻辑加上传感器,基本就可以实时监测车辆的行驶状态,包括但不限于车速、转向角度等关键参数。
    lauguo2013 2024-12-17 14:43 53浏览
  •        随着对车载高速总线的深入研究,以电信号为媒介的传输方式逐渐显露出劣势,当传输速率超过25Gbps时,基于电信号传输已经很难保证长距离传输下的信号质量与损耗。在这样的背景下,应用于工业领域的光通信技术因其高带宽、长距离、低电磁干扰的特点得到了密切的关注,IEEE在2023年发布了802.3cz[1]协议,旨在定义一套光纤以太网在车载领域的应用标准。MultiGBASE-AU总览       以下是Mult
    经纬恒润 2024-12-17 17:29 72浏览
  • You are correct that the length of the via affects its inductance. Not only the length of the via, but also the shape and proximity of the return-current path determines the inductance.   For example, let's work with a four-layer board h
    tao180539_524066311 2024-12-18 15:56 71浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦