开关电源EMC必须掌握的几个基本概念

电子芯期天 2022-10-17 08:54


1
电磁干扰的产生与传输

电磁干扰传输有两种方式:一种是传导传输方式,另一种则是辐射传输方式。传导传输是在干扰源和敏感设备之间有完整的电路连接,干扰信号沿着连接电路传递到接收器而发生电磁干扰现象。


辐射传输是干扰信号通过介质以电磁波的形式向外传播的干扰形式。常见的辐射耦合有三种:1)一个天线发射的电磁波被另一个天线意外地接收,称为天线对天线的耦合;2)空间电磁场经导线感应而耦合,称为场对线的耦合。3)两根平等导线之间的高频信号相互感应而形成的耦合,称为线对线的感应耦合。


2
电磁干扰的产生机理

从被干扰的敏感设备角度来说,干扰耦合又可分为传导耦合和辐射耦合两类。


传导耦合模型

传导耦合按其原理可分为电阻性耦合、电容性耦合和电感性耦合三种基本耦合方式。


辐射耦合模型

辐射耦合是干扰耦合的另一种方式,除了从干扰源发出的有意辐射外,还有大量的无意辐射。同时,PCB板上的走线无论是电源线、信号线、时钟线、数据线或者控制线等,都能起到天线的效果,即可辐射出干扰波,又可起到接收作用。


3
电磁干扰控制技术

①传输通道抑制


滤波:在设计和选用滤波器时应注意频率特性、耐压性能、额定电流、阻抗特性、屏蔽和可靠性。滤波器的安装正确与否对其插入损耗特性影响很大,只有安装位置恰当,安装方法正确,才能对干扰起到预期的滤波作用。在安装滤波器时应考虑安装位置,输入输出侧的配线必须屏蔽隔离,以及高频接地和搭接方法。


屏蔽:电磁屏蔽按原理可分为电场屏蔽、磁场屏蔽和电磁场屏蔽三种。电场屏蔽包含静电屏蔽和交变电场屏蔽;磁场屏蔽包含低频磁场屏蔽和高频磁场屏蔽。不同类型的电磁屏蔽对屏蔽体的要求不同。在实际的屏蔽中,电磁屏蔽效能更大程度上依赖于屏蔽体的结构,即导电的连续性。实际的屏蔽体由于制造、装配、维修、散热、观察及接口连接要求,其上面一般都开有形状各异、尺寸不同的孔缝,这些孔缝对于屏蔽体的屏蔽效能起着重要的影响作用,因此必须采取措施来抑制孔缝的电磁泄漏。


接地:接地有安全接地和信号接地两种。同时,接地也会引入接地阻抗及地回路干扰。接地技术包括接地点的选择、电路组合、接地的设计和抑制接地干扰措施的合理应用等。


搭接:搭接是指导体间低阻抗连接,只有良好的搭接才能使电路完成其设计功能,使干扰的各种抑制措施得以发挥作用。搭接方法可分为永久性搭接和半永久性搭接两种,而搭接类型分为直接搭接和间接搭接。


布线:布线是印刷电路板电磁兼容性设计的关键,应选择合理的导线宽度,采取正确的布线策略,如加粗地线,将地线闭合成环路,减少导线不连续性,采用多层板等。


②空间分离


空间分离是抑制空间辐射骚扰和感应耦合骚扰的有效方法,通过加大骚扰源和接受器敏感设备之间的空间距离,使骚扰电磁场到达敏感设备时的强度已衰减到低于接受设备敏感度门限,从而达到抑制电磁干扰的目的。由电磁场理论可知,场强在近区感应场中以1/r3的方式衰减,远区辐射场的场强分布按1/r方式减小。因此,为了满足系统的电磁兼容性要求,尽量将组成系统的各个设备间的空间距离增大。在设备、系统布线中,限制平行线缆的最小间距,以减少串扰。在PCB设计中,规定引线条间的最小间隔。另外,空间分离也包括在空间有限的情况下,对骚扰源辐射方向的方位调整、骚扰源电场矢量与磁场矢量的空间取向的控制。


③时间分离


当骚扰源非常强,不易采用其他方法可靠抑制时,通常采用时间分隔的方法,使有用信号在骚扰信号停止发射的时间内传输,或者当强骚扰信号发射时,使易受骚扰的敏感设备短时关闭,以避免遭受损害。时间分隔控制有两种形式,一种是主动时间分隔,适用于有用信号出现时间与干扰信号出现时间有确定先后关系的情况;另一种是被动时间分隔,按照干扰信号与有用信号出现的特征使其中某一信号迅速关闭,从而达到时间上不重合、不覆盖的控制要求。


④频谱管理


频谱的规划划分是把各频段划分给各种无线电业务,为特定用户制定频段。制定国家标准规范是防止干扰以及在某些情况下确保通信系统达到所需通信性能的基础。这包括无线电设备的核准程序,无线电发射机、接收机和其他设备型号核准所要求的最低性能标准文件。


⑤电气隔离


电气隔离是避免电路中传导干扰的可靠方法,同时还能使有用信号正常耦合传输。常见的电气隔离耦合形式有机械耦合、电磁耦合、光电耦合等。DC/DC变换器是一种应用广泛的电器隔离器件,它将一种直流电压变换成另一种直流电压,为了防止多个设备共用一个电源引起共电源内阻干扰,应用DC/DC变换器单独对各路供电,以保证电路不受电源中的信号干扰。


4
开关电源产生干扰的原因

开关电源首先将工频交流整流为直流,再逆变为高频,最后经过整流滤波电路输出,得到稳定的直流电压,因此自身含有大量的谐波干扰。同时,由于变压器的漏感和输出二极管的反向恢复电流造成的尖峰,都形成了潜在的电磁干扰。开关电源中的干扰源主要集中在电压、电流变化大的元器件上,突出表现在开关管、二极管、高频变压器等上。


①开关电路产生的电磁干扰


开关电路是开关电源的主要干扰源之一。开关电路是开关电源的核心,主要由开关管和高频变压器组成。它产生的du/dt具有较大幅度的脉冲,频带较宽且谐波丰富。这种脉冲干扰产生的主要原因是:开关管负载为高频变压器初级线圈,是感性负载。在开关管导通瞬间,初级线圈产生很大的涌流,并在初级线圈的两端出现较高的浪涌尖峰电压;在开关管断开瞬间,由于初级线圈的漏磁通,致使一部分能量没有从一次线圈传输到二次线圈,储藏在电感中的这部分能量将和集电极电路中的电容、电阻形成带有尖峰的衰减振荡,叠加在关断电压上,形成关断电压尖峰。电源电压中断会产生与初级线圈接通时一样的磁化冲击电流瞬变,这种瞬变是一种传导型电磁干扰,既影响变压器初级,还会使传导干扰返回配电系统,造成电网谐波电磁干扰,从而影响其他设备的安全和经济运行。


②整流电路产生的电磁干扰


整流电路中,在输出整流二极管截止时有一个反向电流,它恢复到零点的时间与结电容等因素有关。其中,能将反向电流迅速恢复到零的二极管称为硬恢复特性二极管,这种二极管在变压器漏感和其他分布参数的影响下将产生较强的高频干扰,其频率可达几十MHz。高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。


③高频变压器


高频变压器的初级线圈、开关管和滤波电容构成的高频开关电流环路可能会产生较大的空间辐射,形成辐射干扰。如果电容滤波容量不足或高频特性不好,电容上的高频阻抗会使高频电流以差模方式传导到交流电源中形成传导干扰。需要注意的是,在二极管整流电路产生的电磁干扰中,整流二极管反向恢复电流的di/dt远比续流二极管反向恢复电流的di/dt大得多。作为电磁干扰源来研究,整流二极管反向恢复电流形成的干扰强度大、频带宽。但是,整流二极管产生的电压跳变远小于功率开关管导通和关断时产生的电压跳变。因此,也可不计整流二极管产生的│dv/dt│影响,把整流电路当成电磁干扰耦合通道的一部分来研究。


④分布电容引起的干扰


开关电源工作在高频状态,因而其分布电容不可忽略。一方面,散热片与开关管集电极间的绝缘片接触面积较大,且绝缘片较薄,因此两者间的分布电容在高频时不能忽略。高频电流会通过分布电容流到散热片上,再流到机壳地,产生共模干扰;另一方面,脉冲变压器的初次级之间存在着分布电容,可将原边电压直接耦合到副边上,在副边作直流输出的两条电源线上产生共模干扰。


⑤杂散参数影响耦合通道的特性


在传导干扰频段(《30MHz),多数开关电源干扰的耦合通道是可以用电路网络来描述的。但是,开关电源中的任何一个实际元器件,如电阻、电容、电感乃至开关管、二极管都包含有杂散参数,且研究的频带愈宽,等值电路的阶次愈高。因此,包括各元器件杂散参数和元器件间的耦合在内的开关电源的等效电路将复杂得多。在高频时,杂散参数对耦合通道的特性影响很大,分布电容的存在成为电磁干扰的通道。另外,在开关管功率较大时,集电极一般都需加上散热片,散热片与开关管之间的分布电容在高频时不能忽略,它能形成面向空间的辐射干扰和电源线传导的共模干扰。


5
开关电源电磁干扰的控制技术

要解决开关电源的电磁干扰问题,可从3个方面入手:1)减小干扰源产生的干扰信号;2)切断干扰信号的传播途径;3)增强受干扰体的抗干扰能力。因此,开关电源电磁电磁干扰要控制技术主要有:电路措施、EMI滤波、元器件选择、屏蔽和印制电路板抗干扰设计等。


①减少开关电源本身的干扰


● 软开关技术:在原有的硬开关电路中增加电感和电容元件,利用电感和电容的谐振,降低开关过程中的du/dt和di/dt,使开关器件开通时电压的下降先于电流的上升,或关断时电流的下降先于电压的上升,来消除电压和电流的重叠。


● 开关频率调制技术:通过调制开关频率fc,把集中在fc及其谐波2fc、3fc…上的能量分散到它们周围的频带上,以降低各个频点上的EMI幅值。该方法不能降低干扰总量,但能量被分散到频点的基带上,从而使各个频点都不超过EMI规定的限值。为了达到降低噪声频谱峰值的目的,通常有两种处理方法:随机频率法和调制频率法。


● 共模干扰的有源抑制技术:设法从主回路中取出一个与导致电磁干扰的主要开关电压波形完全反相的补偿EMI噪声电压,并用它去平衡原开关电压。


● 减小电磁干扰的缓冲电路:其由线性阻抗稳定网络组成,作用是消除在供电电力线内潜在的干扰,包括电力线干扰、电快速瞬变,电涌,电压高低变化和电力线谐波等。这些干扰对一般稳压电源来说,影响不是很大,但对高频开关电源的影响显著。


● 滤波:EMI滤波器的主要目的之一,就是要在150kHz~30MHz的频段范围获得较高的插入损耗,但对频率为50Hz工频信号不产生衰减,使额定电压、电流顺利通过,同时还必须满足一定的尺寸要求。任何电源线上的传导干扰信号,均可用差模和共模信号来表示。在一般情况下,差模干扰幅度小,频率低,所造成的干扰较小;共模干扰幅度大,频率高,还可以通过导线产生辐射,所造成的干扰较大。因此,欲削弱传导干扰,把EMI信号控制在有关EMC标准规定的极限电平以下,最有效的方法就是在开关电源输入和输出电路中加装电磁干扰滤波器。


● PCB设计:PCB抗干扰设计主要包括PCB布局、布线及接地,其目的是减小PCB的电磁辐射和PCB上电路之间的串扰。开关电源布局的最佳方法与其电气设计类似。在确定PCB的尺寸形状后,再确定特殊元器件(如各种发生器、晶振等)的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。


● 元器件的选择:选择不易产生噪声、不易传导和辐射噪声的元器件。通常特别值得注意的是,二极管和变压器等绕组类元器件的选用。反向恢复电流小、恢复时间短的快速恢复二极管是开关电源高频整流部分的理想器件。


②切断干扰信号的传播途径—共模、差模电源线滤波器设计


电源线干扰可以使用电源线滤波器滤除。一个合理有效的开关电源EMI滤波器应该对电源线上差模和共模干扰都有较强的抑制作用。


③增强敏感电路的抗干扰能力


这主要包括屏蔽和接地两种方式。


载自网络员微信(pqw834322840!

稿//广// 13237418207

亿~

💬 👍 ❤️ 

电子芯期天 致力于分享各种电子电路开发设计资料及经验.
评论
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 182浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 41浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 55浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 198浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 399浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 122浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 112浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 444浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 186浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 101浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦