ECCV2022|普通VR设备实现全身运动捕捉,ETH&Meta为虚拟人物形象添加了下半身

OpenCV学堂 2022-10-16 23:17

点击上方↑↑↑OpenCV学堂”关注我

来源:公众号 机器之心 授权

来自苏黎世联邦理工学院和 Meta 虚拟现实实验室的研究者联合提出了一个用稀疏运动传感设备进行全身位姿估计与追踪的方案。


近日,Meta Connect 大上「有腿」的虚拟世界人物形象引起机器学习和VR社区的高度关注。人们意识到,在构建元宇宙的美好愿景中,虚拟形象的生动逼真是非常重要的。


Meta Connect 大会上扎克伯格展示了自己的虚拟形象。


以前,虚拟人物形象通常只有上半身,这严重破坏了用户的沉浸感,降低了整体的使用体验。


为了解决这个问题,来自苏黎世联邦理工学院 (ETH Zurich) 和 Meta 虚拟现实实验室 (Reality Labs at Meta) 的学者联手提出了 AvatarPoser,一个用稀疏运动传感设备进行全身位姿估计与追踪的方案。该工作被计算机视觉顶会 ECCV 2022 接收,论文和代码均已开源。


  • 论文链接:https://arxiv.org/abs/2207.13784

  • 代码链接:https://github.com/eth-siplab/AvatarPoser


研究背景


当前的混合现实头戴式显示器和手持控制器可以追踪用户在现实世界中的头部和手的位置和姿势,以便用户在增强现实和虚拟现实场景中进行交互。虽然这足以支持用户提供输入信息,但是通常只将用户的虚拟形象局限于上半身。因此,当前 VR 系统只能提供浮动的虚拟形象,其局限性在协作环境中尤为明显。为了使用稀疏输入源估计全身姿势,先前的工作在腰或腿脚位置加入了额外的追踪器和传感器,但这增加了设备的复杂性并限制了实际应用的便携性。


AvatarPoser 是第一个基于深度学习来通过用户头部和手部的运动输入来预测世界坐标中的全身姿态的方法。该研究用 Transformer 编码器从输入信号中提取深度特征,并将人体的全局运动与局部关节运动解耦,以引导整体的姿态估计。此外,作者还将 Transformer 和逆运动学结合,来优化手臂关节的位置,以匹配手的真实位置。在作者的实验评估中,AvatarPoser 在大型动作捕捉数据集 AMASS 的评估中取得了最佳结果。该方法的极快的推理速度也支持实时操作,提供了一个实用的接口来支持元界应用的整体的虚拟人表示和控制。


相关工作


文章和此前的相关工作 Final IK, LoBSTr (Eurographics 2021), CoolMoves (IMWUT 2021), VAE-HMD (ICCV 2021)进行了比较。Final IK 是基于物理模型的标准商业解决方案。然而,它只能给出中性的下半身位置,因此产生了看起来不真实的运动预测。LoBSTr 使用 GRU 模型根据头部、手部和腰部的跟踪信号预测下半身,并通过 IK 求解器计算上半身姿势。


但是,这种方法需要额外的腰部跟踪器。CoolMoves 是第一个只使用来自头戴式设备和手控制器的输入来估计全身姿势的方法。然而,所提出的基于 KNN 的方法只能在小数据中插值估计姿势,且需要运动类型已知。VAE-HMD 是最近提出的一种基于 VAE 的方法,可以从稀疏输入中生成合理且多样化的身体姿势。然而,该方法所使用的信息都是相对于与腰部位置的,这相当于使用了腰部的位置作为第四个输入。因此,用稀疏传感设备追踪虚拟人全身的方法主要存在三个局限性:


(1) 大多数通用商用程序使用逆向运动学(IK)来估计全身姿势。这通常会产生看似静态且不自然的人体运动,尤其是对于远离运动链中已知关节位置的那些关节。 

(2) 尽管目标是仅使用来自头部和手部的输入,但现有的基于深度学习的方法隐含地使用了腰部姿势的信息。然而,大多数便携式混合现实系统无法进行腰部跟踪,这增加了全身估计的难度。

(3) 即使使用腰部追踪设备,先前方法估计的下半身动画也会经常包含抖动和滑动伪影。这些往往是由腰部跟踪器的无意运动引起的,该跟踪器连接在腹部,因此与实际腰部关节的移动方式不同。


方法介绍


AvatarPoser 的整体框架如图 2 所示。这是一个时间序列的网络结构,它将来自稀疏跟踪器的前 N - 1 帧和当前第 N 帧的 6D 信号作为输入,并预测人体的全局方向以及每个关节相对于其父节点的局部相对旋转。具体来说,AvatarPoser 由四个组件组成:Transformer 编码器、稳定器、正向运动学 (FK) 模块和逆向运动学 (IK) 模块。作者设计的网络使得每个组件都可以解决特定的任务。


Transformer 编码器: 由于 Transformer 在效率、可扩展性和长距离建模能力方面具有优势,本文的方法建立在其基础上,从时间序列数据中提取有用的信息,用自注意力 (self-attention) 机制来清楚地捕获数据中的全局远程依赖关系。具体来说,给定输入信号,首先应用线性嵌入将特征丰富到 256 维。接下来,Transformer 编码器从头显和手部的先前时间步长中提取深度姿势特征,这些特征分别由用于全局运动预测的稳定器和用于局部姿势估计的 2 层多层感知器 (MLP) 共享。Transformer 中的 head 的数量设置为 8,自注意力层的数量设置为 3。


稳定器 Stabilizer: 稳定器是一个 2 层多层感知机,它接受来自 Transformer 编码器生成的 256 维姿势特征作为输入,负责输出人体的全局运动方向(也是腰部的旋转方向)。因此,稳定器通过将全局方向与姿势特征解耦并通过身体运动链从头部位置获得全局平移来负责全局运动导航。尽管通过运动链从给定的头部姿势计算全局方向也是一种只管的解决方案,但用户的头部旋转通常独立于其他关节的运动, 因此这种方法会导致估计的整体方向对头部的旋转很敏感。比如考虑一下用户站着不动,只转动头部的场景,全局方向很可能会有很大的误差,这往往会导致生成的虚拟人浮动在空中,如图 3 的左边图所示。


正向运动学 (FK) 模块:正向运动学 (FK) 模块将预测的局部旋转作为输入,计算给定人体骨骼模型的所有关节位置。虽然基于旋转的方法无需重新投影到骨架约束以避免骨骼拉伸和无效配置即可提供稳健的结果,但它们容易沿着运动链累积位置误差。在没有 FK 模块的情况下训练网络只能最小化关节旋转角度,但不会在优化过程中考虑实际产生的关节位置。


逆向运动学模块:基于旋转的姿态估计的一个主要问题是末端执行器的预测可能会偏离它们的实际位置——即使末端执行器用作已知输入,例如 VR 场景中的手。这是因为对于末端执行器,误差会沿着运动链累积。然而,准确估计末端执行器的位置在混合现实中尤为重要,因为手通常用于提供用户的输入信息,即使是位置上的小误差也会严重干扰与虚拟界面元素的交互。为了解决这个问题,本文采用了一个单独的 IK 模块,该算法根据已知的手部位置调整手臂肢体位置。具体来说,在网络产生输出后,IK 模块会调整肩部和肘部关节的估计旋转角度,以减少手部位置的误差,如图 3 的右图所示。


实验


作者评估了三个和四个输入的不同方法。评估指标是平均每个关节旋转误差 (MPJRE)、位置误差(MPJPE) 和速度误差(MPJVE)。实验表明,AvatarPoser 在两种设置中都实现了 SOTA 的性能。


表 1 报告了四个和三个输入的所考虑指标(MPJRE、MPJPE 和 MPJVE)的数值结果。可以看出,AvatarPoser 在所有三个指标上都取得了最佳结果,并且显著优于所有其他方法, VAE-HMD 在 MPJPE 上取得了第二好的性能,紧随其后的是 CoolMoves。Final IK 在 MPJPE 和 MPJRE 上给出了最差的结果,因为它为了优化末端执行器的位置和姿势,没有考虑到其他身体关节的位置和平滑度。因此,使用 Final IK 进行上身姿态估计的 LoBSTr 的性能也很低。作者表示这显示了用数据驱动方法从现有动作捕捉数据集中学习人体运动的价值。但是,这并不意味着传统的优化方法没有用,作者的消融研究中展示了逆向运动学与深度学习相结合如何提高手部位置的准确性。


为了进一步评估提出的方法的泛化能力,作者在不同方法之间进行了跨数据集评估。为此,作者在两个子集上进行训练,在另一个子集进行测试。表 2 显示了在 CMU、BMLrub 和 HDM05 数据集上测试的不同方法的实验结果。AvatarPoser 再次在所有三个数据集中的所有评估指标上都取得了最好的结果。


作者还对不同子模块进行消融研究,并在表 3 中提供结果。实验是在与表 2 中的 HDM05 相同的测试集上进行的。评价指标为 MPJRE [◦]和 MPJPE [cm] 。除了全身关节的位置误差外,作者还计算了手部位置的平均误差,以体现 IK 模块如何帮助改善手的位置。


此外,作者还给出了方法对比的视频,有移动,锻炼,投掷 3 个示例,黄颜色代表误差,可以说 AvatarPoser 的结果是一骑绝尘,非常丝滑了!


AvatarPoser 也可以在流行的 VR 系统上很好地工作,尽管训练时只使用了合成的动作捕捉数据。作者在 VIVE Pro 头显和两个控制器上进行测试,如视频所示,AvatarPoser 对各种运动类型(如步行、坐着、站立、跑步、跳跃和蹲下)都具有稳定优秀的性能。


总结


这篇论文展示了全新的基于 Transformer 的方法 AvatarPoser,仅通过混合现实头显和手持控制器的运动信号来估计真实的人体姿态。AvatarPoser 通过将全局运动信息与学习的姿势特征解耦并使用它来引导姿态估计,在没有腰部信号的情况下获得了稳健的估计结果。此外,通过将基于学习的方法与传统的基于模型的优化相结合,该方法在全身风格的真实感和准确的手控之间保持平衡。AvatarPoser 在 AMASS 数据集上的大量实验表明其不仅取得了 SOTA 的性能,更为实际的 VR/AR 应用提供了一个实用的解决方案。

OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 59浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 69浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 65浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 163浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 151浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 91浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 70浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 163浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 119浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 76浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦