【Go实现】实践GoF的23种设计模式:代理模式

原创 元闰子的邀请 2022-10-16 18:21

上一篇:【Go实现】实践GoF的23种设计模式:访问者模式

简单的分布式应用系统(示例代码工程):https://github.com/ruanrunxue/Practice-Design-Pattern--Go-Implementation

简介

GoF 对代理模式(Proxy Pattern)的定义如下:

Provide a surrogate or placeholder for another object to control access to it.

也即,代理模式为一个对象提供一种代理以控制对该对象的访问

它是一个使用率非常高的设计模式,在现实生活中,也是很常见。比如,演唱会门票黄牛。假设你需要看一场演唱会,但官网上门票已经售罄,于是就当天到现场通过黄牛高价买了一张。在这个例子中,黄牛就相当于演唱会门票的代理,在正式渠道无法购买门票的情况下,你通过代理完成了该目标。

从演唱会门票的例子我们也能看出,使用代理模式的关键在于,当 Client 不方便直接访问一个对象时,提供一个代理对象控制该对象的访问。Client 实际上访问的是代理对象,代理对象会将 Client 的请求转给本体对象去处理。

UML 结构

场景上下文

在 简单的分布式应用系统(示例代码工程)中,db 模块用来存储服务注册和监控信息,它是一个 key-value 数据库。为了提升访问数据库的性能,我们决定为它新增一层缓存:

另外,我们希望客户端在使用数据库时,并不感知缓存的存在,这些,代理模式可以做到。

代码实现

// demo/db/cache.go
package db

// 关键点1: 定义代理对象,实现被代理对象的接口
type CacheProxy struct {
  // 关键点2: 组合被代理对象,这里应该是抽象接口,提升可扩展性
    db    Db
    cache sync.Map // key为tableName,value为sync.Map[key: primaryId, value: interface{}]
    hit   int
    miss  int
}

// 关键点3: 在具体接口实现上,嵌入代理本身的逻辑
func (c *CacheProxy) Query(tableName string, primaryKey interface{}, result interface{}) error {
    cache, ok := c.cache.Load(tableName)
    if ok {
        if record, ok := cache.(*sync.Map).Load(primaryKey); ok {
            c.hit++
            result = record
            return nil
        }
    }
    c.miss++
    if err := c.db.Query(tableName, primaryKey, result); err != nil {
        return err
    }
    cache.(*sync.Map).Store(primaryKey, result)
    return nil
}

func (c *CacheProxy) Insert(tableName string, primaryKey interface{}, record interface{}) error {
    if err := c.db.Insert(tableName, primaryKey, record); err != nil {
        return err
    }
    cache, ok := c.cache.Load(tableName)
    if !ok {
        return nil
    }
    cache.(*sync.Map).Store(primaryKey, record)
    return nil
}

...

// 关键点4: 代理也可以有自己特有方法,提供一些辅助的功能
func (c *CacheProxy) Hit() int {
    return c.hit
}

func (c *CacheProxy) Miss() int {
    return c.miss
}

...

客户端这样使用:

// 客户端只看到抽象的Db接口
func client(db Db) {
    table := NewTable("region").
      WithType(reflect.TypeOf(new(testRegion))).
      WithTableIteratorFactory(NewRandomTableIteratorFactory())
    db.CreateTable(table)
    table.Insert(1, &testRegion{Id: 1, Name: "region"})

    result := new(testRegion)
    db.Query("region"1, result)
}

func main() {
    // 关键点5: 在初始化阶段,完成缓存的实例化,并依赖注入到客户端
    cache := NewCacheProxy(&memoryDb{tables: sync.Map{}})
    client(cache)
}

本例子中,Subject 是 Db 接口,Proxy 是 CacheProxy 对象,SubjectImpl 是 memoryDb 对象:

总结实现代理模式的几个关键点:

  1. 定义代理对象,实现被代理对象的接口。本例子中,前者是 CacheProxy 对象,后者是 Db 接口。
  2. 代理对象组合被代理对象,这里组合的应该是抽象接口,让代理的可扩展性更高些。本例子中,CacheProxy 对象组合了 Db 接口。
  3. 代理对象在具体接口实现上,嵌入代理本身的逻辑。本例子中,CacheProxy 在 QueryInsert 等方法中,加入了缓存 sync.Map 的读写逻辑。
  4. 代理对象也可以有自己特有方法,提供一些辅助的功能。本例子中,CacheProxy 新增了HitMiss等方法用于统计缓存的命中率。
  5. 最后,在初始化阶段,完成代理的实例化,并依赖注入到客户端。这要求,客户端依赖抽象接口,而不是具体实现,否则代理就不透明了。

扩展

Go 标准库中的反向代理

代理模式最典型的应用场景是远程代理,其中,反向代理又是最常用的一种。

以 Web 应用为例,反向代理位于 Web 服务器前面,将客户端(例如 Web 浏览器)请求转发后端的 Web 服务器。反向代理通常用于帮助提高安全性、性能和可靠性,比如负载均衡、SSL 安全链接。

Go 标准库的 net 包也提供了反向代理,ReverseProxy,位于 net/http/httputil/reverseproxy.go 下,实现 http.Handler 接口。http.Handler 提供了处理 Http 请求的能力,也即相当于 Http 服务器。那么,对应到 UML 结构图中,http.Handler 就是 Subject,ReverseProxy 就是 Proxy:

下面列出 ReverseProxy 的一些核心代码:

// net/http/httputil/reverseproxy.go
package httputil

type ReverseProxy struct {
    // 修改前端请求,然后通过Transport将修改后的请求转发给后端
    Director func(*http.Request)
    // 可理解为Subject,通过Transport来调用被代理对象的ServeHTTP方法处理请求
    Transport http.RoundTripper
    // 修改后端响应,并将修改后的响应返回给前端
    ModifyResponse func(*http.Response) error
    // 错误处理
    ErrorHandler func(http.ResponseWriter, *http.Request, error)
    ...
}

func (p *ReverseProxy) ServeHTTP(rw http.ResponseWriter, req *http.Request) {
    // 初始化transport
    transport := p.Transport
    if transport == nil {
        transport = http.DefaultTransport
    }
    ...
    // 修改前端请求
    p.Director(outreq)
    ...
    // 将请求转发给后端
    res, err := transport.RoundTrip(outreq)
    ...
    // 修改后端响应
    if !p.modifyResponse(rw, res, outreq) {
        return
    }
    ...
    // 给前端返回响应
    err = p.copyResponse(rw, res.Body, p.flushInterval(res))
    ...
}

ReverseProxy 就是典型的代理模式实现,其中,远程代理无法直接引用后端的对象引用,因此这里通过引入 Transport 来远程访问后端服务,可以将 Transport 理解为 Subject。

可以这么使用 ReverseProxy

func proxy(c *gin.Context) {
    remote, err := url.Parse("https://yrunz.com")
    if err != nil {
        panic(err)
    }

    proxy := httputil.NewSingleHostReverseProxy(remote)
    proxy.Director = func(req *http.Request) {
        req.Header = c.Request.Header
        req.Host = remote.Host
        req.URL.Scheme = remote.Scheme
        req.URL.Host = remote.Host
        req.URL.Path = c.Param("proxyPath")
    }

    proxy.ServeHTTP(c.Writer, c.Request)
}

func main() {
    r := gin.Default()
    r.Any("/*proxyPath", proxy)
    r.Run(":8080")
}

典型应用场景

  • 远程代理(remote proxy),远程代理适用于提供服务的对象处在远程的机器上,通过普通的函数调用无法使用服务,需要经过远程代理来完成。因为并不能直接访问本体对象,所有远程代理对象通常不会直接持有本体对象的引用,而是持有远端机器的地址,通过网络协议去访问本体对象
  • 虚拟代理(virtual proxy),在程序设计中常常会有一些重量级的服务对象,如果一直持有该对象实例会非常消耗系统资源,这时可以通过虚拟代理来对该对象进行延迟初始化。
  • 保护代理(protection proxy),保护代理用于控制对本体对象的访问,常用于需要给 Client 的访问加上权限验证的场景。
  • 缓存代理(cache proxy),缓存代理主要在 Client 与本体对象之间加上一层缓存,用于加速本体对象的访问,常见于连接数据库的场景。
  • 智能引用(smart reference),智能引用为本体对象的访问提供了额外的动作,常见的实现为 C++ 中的智能指针,为对象的访问提供了计数功能,当访问对象的计数为 0 时销毁该对象。

优缺点

优点

  • 可以在客户端不感知的情况下,控制访问对象,比如远程访问、增加缓存、安全等。
  • 符合 开闭原则,可以在不修改客户端和被代理对象的前提下,增加新的代理;也可以在不修改客户端和代理的前提下,更换被代理对象。

缺点

  • 作为远程代理时,因为多了一次转发,会影响请求的时延。

与其他模式的关联

从结构上看,装饰模式 和 代理模式 具有很高的相似性,但是两种所强调的点不一样。前者强调的是为本体对象添加新的功能,后者强调的是对本体对象的访问控制

文章配图

可以在 用Keynote画出手绘风格的配图 中找到文章的绘图方法。

参考

[1] 【Go实现】实践GoF的23种设计模式:SOLID原则, 元闰子

[2] 【Go实现】实践GoF的23种设计模式:装饰模式, 元闰子

[3] Design Patterns, Chapter 4. Structural Patterns, GoF

[4] 代理模式, refactoringguru.cn

[5] 什么是反向代理?, cloudflare

更多文章请关注微信公众号:元闰子的邀请


评论
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 58浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 60浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 63浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 149浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 157浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 71浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 159浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 88浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦