FinFet之后,晶体管走向何方?

ittbank 2020-05-13 00:00

一切从摩尔当年吹的一个牛逼说起。

摩尔定律(Moore's law)是由英特尔创始人之一戈登·摩尔提出的。其内容为:集成电路上可容纳的晶体管数目,约每隔两年便会增加一倍;经常被引用的“18个月”,是由英特尔首席执行官大卫·豪斯(David House)提出:预计18个月会将芯片的性能提高一倍(即更多的晶体管使其更快),是一种以倍数增长的观测。

moore's law

摩尔定律,是在观察基础上,对趋势的一个总结,同时也是对未来的展望。从摩尔定律提出,至今,已经有几十年的时间。期间,不断的有摩尔定律终结的传言,然而,这些传言却不断被打破。

摩尔定律,终有一天会终结,但是所有人都希望这一天来的越晚越好。

我们从另外一个角度来看,就可以明白,摩尔定律的延续能给我们带来的好处。

每千美元买到的算力

上图是每1000美元,所能买到的计算能力。相信不久之后,仅仅花1000美元,我们就可以买到与人类大脑计算能力相当的电子产品。

为了让摩尔定律延续到更小的器件尺度,学术界和工业界在不同的材料、器件结构和工作原理方面的探索一直在进行中。探索的问题之一是晶体管的闸极设计。随着器件尺寸越来越小,能否有效的控制晶体管中的电流变得越来越重要。

本文将尝试就小小的晶体管闸极的角度,来见证半导体人是如何不断实现着摩尔当年所吹下的牛逼,使得摩尔定律不断延续传奇。

短沟道效应

high-k电介质材料的引入(high-k dielectric material)


从亚微米工艺, 到后来的90nm工艺所代表的深亚微米时代,业内一直按照摩尔定律,稳步的发展。

在65nm工艺的晶体管中的二氧化硅层已经缩小仅有5个氧原子的厚度了。作为阻隔栅极和下层的绝缘体,二氧化硅层已经不能再进一步缩小了,否则产生的漏电流会让晶体管无法正常工作。

high-k介质

这时候,大家希望找到一种高k介质的材料。

为什么这层二氧化硅需要越来越薄,其实就是为了增大gate与闸极之间的电容。如果能找到高介电常数的物质,也同样能够增大电容值。

采用高电常数(high-k)的栅极介质,并且增加其厚度,则可获得低阈值电压、低沟道漏电、低栅极漏电的良好折中。

2007年,英特尔采用high-k介质技术,发布第一款基于45纳米的四核英特尔至强处理器以及英特尔酷睿2至尊四核处理器。

于是,从45nm开始,进入和high-k时代。

由于high-k介质的引入,随后的28nm制程的研发,也还算顺利。

新的结构


然而在28nm之后,人们发现,如果继续采用传统的Planar结构,摩尔定律难以为继。


这时候,重要到了必须采用一种新的结构的时刻了。

这时候,大家的目光放到了两种非常有前途的结构上,那就是现在赫赫有名的FinFET结构以及他的竞争对手FDSOI。

这两种结构都是由业界泰斗胡正明教授在上世纪90年代提出。然后经过不断的论证和实验,趋于成熟。

他的思路就是,鉴于在关闭状态,source到drain之间的漏电主要发生于距离栅极较远的位置,那么,只需要将闸极厚度做到足够薄,那么漏电将会被有效的控制。

基于这个思路,他提出了两种结构,FinFET以及UTBSOI,UTBSOI是Ultra Thin Body SOI的简称,也就是后来的FDSOI。

FDSOI


FDSOI, 是将cmos与衬底之间通过Buried oxide(埋氧层)隔离。SOI就是Silicon on Insulator的缩写。


buried oxide

另外,沟道中的将不会进行掺杂,主要也是工艺上的原因,想象一下,在只有十几个原子的距离之间,进行掺杂,那么掺杂多一两个原子都会对晶体管的性能造成很大的影响,而以目前的技术手段,尚不能做到如此精确的控制。

沟道无掺杂

FDSOI的关键点是闸极(body)做到非常薄。只有这样才能够减少SD之间的漏电。如果厚的话,距离栅极远的地方,漏电依然无法避免。

Ultra Thin Body

这也是为什么当时胡正明教授提出这种结构时,称之为UTBSOI的原因。

FinFET


FinFET结构

FinFET的鱼鳍(Fin)的结构,增加了栅极对沟道的控制面积,使得栅控能力大大增强,也意味着电压可以进一步降低。

与FDSOI相同,对于闸极材料均不进行掺杂,避免了离散的掺杂原子的散射作用,同重掺杂的平面器件相比,载流子迁移率将会大大提高。

FinFET vs FDSOI:


由于有隔离层与衬底有了隔离,FDSOI有一些特有的特性。

即使衬底可以进行偏压,从而调整晶体管的导通阈值,做到性能与功耗的平衡。虽然目前来看,FDSOI并未成为主流,但是其低成本,低功耗的特性,非常适于现在IOT的大规模应用,因此有其独特的地位。

不过,FDSOI虽有成本优势,因为仍然属于平面工艺,尺寸难以做小,目前来看,在到达12nm之后,将难以再进行缩小。

摩尔定律,将从FinFET这一分支继续向前。

GAAFET


FinFET工艺,使得工艺制程在28nm之后,不断的得以更新换代,直至最新的5nm。

此时,历史似乎又要再次转向。

GAA, 将是这个新的王者吗?

与FinFET的不同之处在于,GAA将通道的四周都被栅极包围,所以称之为Gate All Around。

GAA结构

趋势上来看,FinFET的电压已经降到极限,而GAA,能够将工作电压进一步降低。

GAA电压进一步降低

目前,intel准备在5nm上使用GAA,三星,则准备在3nm上采用GAA。根据台积电财报会议公布的最新消息,台积电在其准备量产的3nm工艺制程上,不过可以确认,仍将采用FinFET工艺。

GAA剖面图

Future




FinFET开启了晶体管立体化的时代,相当于将闸极直立起来。GAA,则是将FinFET中的Fin,再次切割出更多的切面以增大与栅极接触面积。

三星提出的称为MBCFET(multi bridge Channle FET)的结构,则更进一步,类似于将FinFET中的多个Fin的结构再进行堆叠。

MBCFET

晶体管纵向排列的好处显而易见,以前一个晶体管的面积,现在可以容纳多个晶体管,晶体管的增加,将不会带来面积的变化。

毕竟,摩尔定律指的是单位面积的晶体管数目。

从这个意义上来说。我们真的会进入到亚纳米新时代。

end


十年前,也就是2010年,当传统planar CMOS结构走到尽头时,由于胡正明教授发明的FinFET以及FDSOI新结构晶体管,使得摩尔定律得以延续传奇。

无论未来新的结构会不会替代FinFET,无论摩尔定律会不会在未来某一天终结,但是就像胡正明教授所言,半导体产业本身的发展,仍然远远没有到尽头,即使百年之后,它仍将存在。

谨以此文,向所有从事半导体产业的从业者致敬。


来源:白山头讲IC,作者:白山头


ittbank 让电子库存因技术而改变的ITT模式电商平台。引领和适应市场,以共享经济理念的创客及工程师为核心、以免费开放用户生成的数据为基础,为其提供高性价比的应用解决方案和及时精准的供求信息,快速提高产品开发周期和生产直通率、提升电子器件的应用附加值。
评论 (0)
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 225浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 239浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 260浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 190浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 259浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 184浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 208浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 227浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 327浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 166浏览
我要评论
0
1
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦