虽然移动营运商希望所有人相信5G就要闪亮登场,大家很快就能享受5G丰富的新业务以及无限制的带宽,但那些引领未来的设计师们却看到了背后的困难。
例如,他们需要新的无线技术,让复杂的混频信号有效地在三个很宽的频带上进行传输。我曾经是一名电子工程师,知道创建工作于600MHz到42GHz频段不同带宽的信号链是完全可能的。换言之,以我在RF设计方面的有限经验,我相信,实现这些功能所需的成本和涉及的复杂性可能是5G应用的一大障碍。
我最近跟Resonant公司首席运营官Dylan Kelly进行了深入交流,他们公司推出的新型单片射频滤波器技术给了我信心,我现在没那么悲观了。这让我知道了现代无线技术有多大的潜力。如果Resonant的产品能够面市,他们的技术应该能创造出更简单、尺寸更小、成本更低的射频前端,而性能上完全没有任何影响。
我们来快速回顾一下目前大多数蜂窝信号网络业务是如何开展的,你就能理解我为什么对此如此感兴趣了。
多年来,蜂窝无线设备在多个频带上工作,使用多个Tx(发射)和Rx(接收)信号链,每个信号链都有自己的放大器、开关和滤波器。每个信号链都采用一组滤波器来消除干扰,并将无线设备发射的能量控制在信道严格限定的范围内。几乎所有这些滤波器都是压电器件,采用光刻工艺制造而成,包括声表面波(SAW)、体声波(BAW)或声波谐振器(AR)等结构。
图1:图中的声波滤波器采用光刻工艺制造而成。(图片来源:Resonant)
采用SAW和温控SAW技术的滤波器一直很受欢迎,因为这种技术十分成熟,使用量大,从而降低了成本。虽然SAW技术足以满足许多应用的要求,但由于其选择性一般、插入损耗较高,所以可能不适合某些应用。此外,SAW滤波器在频率高于2.5GHz时很难正常工作。
BAW滤波器是最近才推出的一种滤波器,信号是通过滤波器材料而不是在其表面进行传播。这种滤波器的插入损耗要低得多(低于2dB),滤波性能也更好,随着技术的发展现在还可以支持5G频段。然而由于制造工艺复杂,因此制造成本高昂,从而限制了其应用。制造一部全球漫游的5G“世界手机”需要大量滤波器,因此必须考虑成本因素。
目前一部顶级4G/LTE智能手机需要50~90个这样的小滤波器。5G手机支持的频段要多得多,而且还要使用支持多个Rx/Tx信号链的MIMO无线技术,这可能会使滤波器的数量增加5~10倍,甚至更多。此外,5G射频模块中使用的滤波器需要更陡、更精确的截止特性,以便在信道周围形成窄保护频带,避免浪费太多可用带宽。
Resonant可能使用一种称之为IDT膜谐振器的结构解决了这些问题。该结构包含单晶体压电膜,以及位于压电膜上面的金属叉指换能器(IDT)。凯利解释说:“金属痕迹会在膜内激起体声波,声波的主频和耦合特性是由压电膜的物理尺寸和特性决定的。”
凯利表示,他们可以采用制造SAW滤波器的设备和工艺来制造IDT-BAW,因此生产成本远低于传统BAW器件。而且,低容量结构能够支持超过40GHz的工作频率,足以支持5G应用。
图2:IDT膜谐振器的截面图显示其基本结构和IDT指激发的体声波。(图片来源:Resonant)
Resonant还有另一项“秘密超能力”,即利用其工艺可以把多个BAW滤波器放在同一衬底上,并将其封装为一个组件。在谈到一个衬底上究竟可以放置多少个滤波器时,Kelly没有给出准确数目,但他明确表示,该技术可以让5G通信的复杂度接近高端4G/LTE的水平。
当我问为什么其他制造商不提供类似的解决方案时,Kelly说,除了他们已经开发的IP,设计和精确仿真支持IDT滤波器的独特结构也有很大难度,因此门槛较高。他认为公司能够成功,很大原因是采用了自主研发的先进建模软件,用以对滤波器进行高度精确的仿真。他解释说,该软件能够提前预测滤波器的性能,从而将产品快速投入生产,而不必再像以前那样,开发SAW/BAW器件往往要在制造工厂反复测试,达到20多次。
通往5G之路仍然不会一帆风顺,但起码设计师少了一个障碍。
作者:Lee Goldberg
来源:EDN电子技术设计
由面包板社区原创发表,版权所有,转载请联系授权!