从闪存卡到SSD硬盘,存储芯片是如何发展起来的?

原创 鲜枣课堂 2022-10-13 07:30

上篇文章(链接),小枣君给大家详细介绍了DRAM的沧桑往事。


DRAM属于易失性存储器,也就是大家常说的内存。今天,我们再来看看半导体存储的另一个重要领域,也就是非易失性存储器(也就是大家熟悉的闪存卡、U盘、SSD硬盘等)。


我在“半导体存储的最强科普(链接)”那篇文章中,给大家介绍过,早期时候,存储器分为ROM(只读存储器)RAM(随机存取存储器)。后来,才逐渐改为易失性存储器非易失性存储器这样更严谨的称呼方式。




1950s-1970s:从ROM到EEPROM


我们从最早的ROM开始说起。


ROM的准确诞生时间,在现有的资料里都没有详细记载。我们只是大概知道,上世纪50年代,集成电路发明之后,就有了掩模ROM


掩模ROM,是真正的传统ROM,全称叫做掩模型只读存储器(MASK ROM)。


这种传统ROM是直接把信息“刻”进存储器里面,完全写死,只读,不可擦除,更不可修改。它的灵活性很差,万一有内容写错了,也没办法纠正,只能废弃。


后来,到了1956年,美国Bosch Arma公司的华裔科学家周文俊(Wen Tsing Chow),正式发明了PROM(Programmable ROM,可编程ROM)


周文俊


当时,Bosch Arma公司带有军方背景,主要研究导弹、卫星和航天器制导系统。


周文俊发明的PROM,用于美国空军洲际弹道导弹的机载数字计算机。它可以通过施加高压脉冲,改变存储器的物理构造,从而实现内容的一次修改(编程)。


后来,PROM逐渐出现在了民用领域。


一些新型的PROM,可以通过专用的设备,以电流或光照(紫外线)的方式,熔断熔丝,达到改写数据的效果。


这些PROM,被大量应用于游戏机以及工业控制领域,存储程序编码。


1959年,贝尔实验室的工程师Mohamed M. Atalla(默罕默德·阿塔拉,埃及裔)Dawon Kahng(姜大元,韩裔)共同发明了金属氧化物半导体场效应晶体管(MOSFET)


默罕默德·阿塔拉与姜大元


MOSFET发明后,被贝尔实验室忽视。又过了很多年,1967年,姜大元与Simon Min Sze(施敏,华裔)提出,基于MOS半导体器件的浮栅,可用于可重编程ROM的存储单元。


姜大元(左上)、施敏(右上),还有它们设计的浮栅架构


这是一个极为重要的发现。后来的事实证明,MOSFET是半导体存储器存储单元的重要基础元件,可以说是奠基性技术。


当时,越来越多的企业(摩托罗拉、英特尔、德州仪器、AMD等)加入到半导体存储的研究中,尝试发明可以重复读写的半导体存储,提升PROM的灵活性。


正是基于MOSFET的创想,1971年,英特尔公司的多夫·弗罗曼(Dov Frohman,以色列裔),率先发明了EPROM(user-erasable PROM,可擦除可编程只读存储器)。


多夫·弗罗曼


EPROM可以通过暴露在强紫外线下,反复重置到其未编程状态。


同样是1971年,英特尔推出了自己的2048位EPROM产品——C1702,采用p-MOS技术。


C1702


不久后,1972年,日本电工实验室的Yasuo Tarui、Yutaka Hayashi和Kiyoko Naga,共同发明了EEPROM(电可擦除可编程ROM)



█ 1980~1988:FLASH闪存的诞生


从ROM发展到EEPROM之后,非易失性存储技术并没有停止前进的脚步。


当时,EEPROM虽然已经出现,但仍然存在一些问题。最主要的问题,就是擦除速度太慢。


1980年,改变整个行业的人终于出现了,他的名字叫舛冈富士雄(Fujio Masuoka,“舛”念chuǎn)。


舛冈富士雄


舛冈富士雄是日本东芝(Toshiba)公司的一名工程师。他发明了一种全新的、能够快速进行擦除操作的浮栅存储器,也就是——“simultaneously erasable(同步可擦除) EEPROM”。


这个新型EEPROM擦除数据的速度极快,舛冈富士雄的同事根据其特点,联想到照相机的闪光灯,于是将其取名为FLASH(闪存)


遗憾的是,舛冈富士雄发明Flash闪存后,并没有得到东芝公司的充分重视。东芝公司给舛冈富士雄发了一笔几百美金的奖金,然后就将这个发明束之高阁。


原因很简单。这一时期,日本DRAM正强势碾压美国,所以,东芝公司想要继续巩固DRAM的红利,不打算深入推进Flash产业。


1984年,舛冈富士雄在IEEE国际电子元件会议上,正式公开发表了自己的发明(NOR Flash)。


在会场上,有一家公司对他的发明产生了浓厚的兴趣。这家公司,就是英特尔



英特尔非常看重FLASH技术的前景。会议结束后,他们拼命打电话给东芝,索要FLASH的样品。收到样品后,他们又立刻派出300多个工程师,全力研发自己的版本。


1986年,他们专门成立了研究FLASH的部门。


1988年,英特尔基于舛冈富士雄的发明,生产了第一款商用型256KB NOR Flash闪存产品,用于计算机存储。


1987年,舛冈富士雄继NOR Flash之后,又发明了NAND Flash。1989年,东芝终于发布了世界上第一个NAND Flash产品。


NOR是“或非(NOT OR)”的意思,NAND是“与非(NOT AND)”的意思。这样的命名和它们自身的基础架构有关系。


如下图所示,NOR Flash是把存储单元并行连到位线上。而NAND Flash,是把存储单元串行连在位线上。

架构对比


NOR Flash存储器,可以实现按位随机访问。而NAND Flash,只能同时对多个存储单元同时访问。

对于NOR Flash,如果任意一个存储单元被相应的字线选中打开,那么对应的位线将变为 0,这种关系和“NOR门电路”相似。

而NAND Flash,需要使一个位线上的所有存储单元都为 1,才能使得位线为 0,和 “NAND门电路”相似。

看不懂?没关系,反正记住:NAND Flash比NOR Flash成本更低。(具体区别,可以参考:关于半导体存储的最强入门科普。)



█ 1988~2000:群雄并起,逐鹿Flash


FLASH(闪存)产品出现后,因为容量、性能、体积、可靠性、能耗上的优势,获得了用户的认可。英特尔也凭借其先发的闪存产品,取得了产业领先优势,赚了不少钱。


搞笑的是,在英特尔公司取得成功后,东芝不仅没有反省自己的失误,反而声称FLASH是英特尔公司的发明,不是自家员工舛冈富士雄的发明。


直到1997年,IEEE给舛冈富士雄颁发了特殊贡献奖,东芝才正式改口。


这把舛冈富士雄给气得不行,后来(2006年),舛冈富士雄起诉了公司,并索要10亿日元的补偿。最后,他和东芝达成了和解,获赔8700万日元(合75.8万美元)。


1988年,艾利·哈拉里(Eli Harari)等人,正式创办了SanDisk公司(闪迪,当时叫做SunDisk)。



1989年,SunDisk公司提交了系统闪存架构专利(“System Flash”),结合嵌入式控制器、固件和闪存来模拟磁盘存储。这一年,英特尔开始发售512K和1MB NOR Flash。


1989年,闪存行业还有一件非常重要的事情,在以色列,有一家名叫M-Systems的公司诞生。他们首次提出了闪存盘的概念,也就是后来的闪存SSD硬盘。


进入1990年代,随着数码相机、笔记本电脑等市场需求的爆发,FLASH技术开始大放异彩。


1991年,SunDisk公司推出了世界上首个基于FLASH闪存介质的ATA SSD固态硬盘(solid state disk),容量为20MB,尺寸为2.5英寸。



东芝也开始发力,陆续推出了全球首个4MB和16MB的NAND Flash。


1992年,英特尔占据了FLASH市场份额的75%。排在第二位的是AMD,只占了10%。除了他俩和闪迪之外,行业还陆续挤进了SGS-Thomson、富士通等公司,竞争开始逐渐变得日趋激烈。


这一年,AMD和富士通先后推出了自己的NOR Flash产品。闪存芯片行业年收入达到2.95亿美元。


1993年,美国苹果公司正式推出了Newton PDA产品。它采用的,就是NOR Flash闪存。



1994年,闪迪公司第一个推出CF存储卡(Compact Flash)。当时,这种存储卡基于Nor Flash闪存技术,用于数码相机等产品。


1995年,M-Systems发布了基于NOR Flash的闪存驱动器——DiskOnChip。


1996年,东芝推出了SmartMedia卡,也称为固态软盘卡。很快,三星开始发售NAND闪存,闪迪推出了采用MLC串行NOR技术的第一张闪存卡。


1997年,手机开始配置闪存。从此,闪存继数码相机之后,又打开了一个巨大的消费级市场。


这一年,西门子和闪迪合作,使用东芝的NAND Flash技术,开发了著名的MMC卡(Multi Media Memory,多媒体内存)。



1999年8月,因为MMC可以轻松盗版音乐,东芝公司对其进行了改装,添加了加密硬件,并将其命名为SD(Secured Digital)卡。


后来,又有了MiniSD、MicroSD、MS Micro2和Micro SDHC等,相信70后和80后的小伙伴一定非常熟悉。



整个90年代末,受益于手机、数码相机、便携式摄像机、MP3播放器等消费数码产品的爆发,FLASH的市场规模迅猛提升。当时,市场一片繁荣,参与的企业也数量众多。其中,最具竞争力的,是三星、东芝、闪迪和英特尔。


2000年,M-Systems和Trek公司发布了世界上第一个商用USB闪存驱动器,也就是我们非常熟悉的U盘


它还有一个名字,叫拇指驱动器


当时,U盘的专利权比较复杂,多家公司声称拥有其专利。中国的朗科,也在1999年获得了U盘的基础性专利。



█ 2000~2012:NAND崛起,NOR失势


90年代末,NAND Flash就已经开始崛起。进入21世纪,崛起的势头更加迅猛。


2001年,东芝与闪迪宣布推出1GB MLC NAND。闪迪自己也推出了首款NAND系统闪存产品。


2004年,NAND的价格首次基于同等密度降至DRAM之下。巨大的成本效应,开始将计算机推进闪存时代。


2007年,手机进入智能机时代,再次对闪存市场技术格局造成影响。


此前的功能机时代,手机对内存的要求不高。NOR Flash属于代码型闪存芯片,凭借NOR+PSRAM的XiP架构(XiP,Execute In Place,芯片内执行,即应用程序不必再把代码读到系统RAM中,而是可以直接在Flash闪存内运行),得到广泛应用。


进入智能机时代,有了应用商店和海量的APP,NOR Flash容量小、成本高的缺点就无法满足用户需求了。


于是,NOR Flash的市场份额开始被NAND Flash大量取代,市场不断萎缩。


2008年左右,从MMC开始发展起来的eMMC,成为智能手机存储的主流技术。


eMMC即嵌入式多媒体卡(embedded Multi Media Card),它把MMC(多媒体卡)接口、NAND及主控制器都封装在一个小型的BGA芯片中,主要是为了解决NAND品牌差异兼容性等问题,方便厂商快速简化地推出新产品。


后来,2011年,UFS(Universal Flash Storage,通用闪存存储)1.0标准诞生。UFS逐渐取代了eMMC,成为智能手机的主流存储方案。当然了,UFS也是基于NAND FLASH的。


SSD硬盘那边就更不用说了,基本上都是采用NAND芯片。


2015年左右,三星、镁光、Cypress等公司,都逐步退出了NOR Flash市场,专注在NAND Flash领域进行搏杀。



█ 2012~现在:闪存行业的现状


  • 市场垄断格局的形成


2011年之后,整个闪存行业动荡不安,收购事件此起彼伏。


那一时期,LSI收购Sandforce、闪迪收购IMFT、 苹果收购Anobit、Fusion-io收购IO Turbine。2016年,发生了一个更重磅的收购——西部数据收购了闪迪


通过整合并购,NAND Flash市场的玩家越来越少。


最终,形成了由三星、铠侠(东芝)、西部数据、镁光、SK 海力士、Intel等巨头为主导的集中型市场。直到现在,也是如此。


在NAND闪存市场里,这些巨头的份额加起来,超过95%。其中,三星的市场份额是最高的,到达了33-35%。



  • 3D NAND时代的到来


正如之前DRAM那篇文章所说,到了2012年左右,随着2D工艺制程逐渐进入瓶颈,半导体开始进入了3D时代。NAND Flash这边,也是如此。


2012 年,三星正式推出了第一代 3D NAND闪存芯片。随后,闪迪、东芝、Intel、西部数据纷纷发布3D NAND产品。闪存行业正式进入3D时代。


此后,3D NAND技术不断发展,堆叠层数不断提升,容量也变得越来越大。


3D NAND存在多种路线。以三星为例,在早期的时候,三星也研究过多种3D NAND方案。最终,他们选择量产的是VG垂直栅极结构的V-NAND闪存。


目前,根据媒体的消息,三星已经完成了第八代V-NAND技术产品的开发,将采用236层3D NAND闪存芯片,单颗Die容量达1Tb,运行速度为2.4Gb/秒。


三星的市场份额最大,但他们的层数并不是最多的。


今年5月份,镁光已经宣布推出232层的3D TLC NAND闪存,并准备在2022年末开始生产。韩国的SK海力士,更是发布了238层的产品。


  • NOR迎来第二春


再来说说NOR Flash。


前面我们说到,NOR Flash从2005年开始逐渐被市场抛弃。


到2016年,NOR Flash市场规模算是跌入了谷底。


谁也没想到,否极泰来,这些年,NOR Flash又迎来了新的生机。


以TWS耳机为代表的可穿戴设备、手机屏幕显示的AMOLED(有源矩阵有机发光二极体面板)和TDDI(触屏)技术,以及功能越来越强大的车载电子领域,对NOR Flash产生了极大的需求,也带动了NOR Flash市场的强劲复苏。


从2016 年开始,NOR Flash市场规模逐步扩大。


受此利好影响,加上很多大厂此前已经放弃或缩减了NOR Flash规模(镁光和Cypress持续减产),所以,一些第二梯队的企业获得了机会。


其中,就包括中国台湾的旺宏、华邦,还有中国大陆的兆易创新。这三家公司的市场份额,约占26%、25%、19%,加起来的话,超过70%。



█ FLASH闪存的国产化


在国产化方面,NAND Flash值得一提的是长江存储


长江存储于2016年7月26日在武汉新芯集成电路制造有限公司的基础上正式成立,主要股东包括中国集成电路产业投资基金和紫光集团、湖北政府等,致力于提供3D NAND闪存设计、制造和存储器解决方案的一体化服务。


2020 年,长江存储宣布128层TLC/QLC两款产品研发成功, 且推出了致钛系列两款消费级SSD新品。


建议大家支持国产


2021年底,长江存储就已经达到了每月生产10万片晶圆的产能。截止2022年上半年,已完成架构为128层的NAND量产。


目前,长江存储正在努力挑战232层NAND,争取尽快缩小制程差距,追赶国际大厂。


NOR Flash方面,刚才已经提到了兆易创新(GigaDevice)


兆易创新成立于2005年,是一家以中国为总部的全球化芯片设计公司。2012年时,他们就是中国大陆地区最大的代码型闪存芯片本土设计企业。


目前,他们在NOR Flash领域排名世界第三。2021年,兆易创新的存储芯片出货量大约是32.88亿颗(主要是NOR Flash),位居全球第二。



█ 结语


近年来,如大家所见,随着FLASH芯片价格的不断下降,个人家庭及企业用户开始大规模采用闪存,以及SSD硬盘。SSD硬盘的出货量,逐渐超过HDD机械硬盘。存储介质的更新换代,又进入新的高峰。


未来,闪存的市场占比将会进一步扩大。在这样的趋势下,不仅我们个人和家庭用户的存储使用体验将会变得更好,整个社会对存力的需求也可以得到进一步的满足。


半导体存储,将为全人类的数字化转型发挥更大的作用。


好啦,今天的文章就到这里,感谢大家的耐心观看!



参考资料:

1、《半导体行业存储芯片研究框架-NOR深度报告》,方正证券;

2、《杂谈闪存二:NOR和NAND Flash》,老狼,知乎;

3、《存储技术发展历程》,谢长生;

4、《闪存技术的50多年发展史》,存储在线;

5、《存储大厂又一次豪赌》,半导体行业观察;

6、《存储芯片行业研究报告》,国信证券;

7、《国产存储等待一场革命》,付斌,果壳;

8、《关于半导体存储,没有比这篇更全的了》,芯师爷;

9、《计算机存储历史》,中国存储网;
10、《3D NAND闪存层数堆叠竞赛,200+层谁才是最优方案?》,闪存市场;

11、《一文看懂3D NAND Flash》,半导体行业观察;

12、百度百科、维基百科相关词条。


鲜枣课堂 学通信,学5G,就上鲜枣课堂!
评论
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 102浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 79浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 71浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 50浏览
  • 本文介绍Linux系统(Ubuntu/Debian通用)挂载exfat格式U盘的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。修改对应的内核配置文件# 进入sdk目录cdrk3562_linux# 编辑内核配置文件vi./kernel-5.10/arch/arm64/configs/rockchip_linux_defconfig注:不清楚内核使用哪个defc
    Industio_触觉智能 2024-12-10 09:44 92浏览
  • 肖特基具有很多的应用场景, 可以做同步整流,防止电流倒灌和电源反接等,但是随着电源电流的增大,肖特基导通正向压降0.3~0.7v的劣势也越发明显,产生了很多的热,对于工程师的散热设计是个考验,增加了工程师的设计难度和产品成本,目前一种新的理想二极管及其控制器,目前正在得到越来越广泛的应用- BMS,无人机,PLC,安防,家电,电动工具,汽车等都在快速普及理想二极管有三种架构,内置电荷泵的类似无锡明芯微MX5050T这种,驱动能力会弱点,静态功耗200uA,外置电荷泵MX74700T的这种驱动能力
    王萌 2024-12-10 08:51 85浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 51浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 141浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 85浏览
  •         霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子
    锦正茂科技 2024-12-10 11:07 64浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 109浏览
  •         在有电流流过的导线周围会感生出磁场,再用霍尔器件检测由电流感生的磁场,即可测出产生这个磁场的电流的量值。由此就可以构成霍尔电流、电压传感器。因为霍尔器件的输出电压与加在它上面的磁感应强度以及流过其中的工作电流的乘积成比例,是一个具有乘法器功能的器件,并且可与各种逻辑电路直接接口,还可以直接驱动各种性质的负载。因为霍尔器件的应用原理简单,信号处理方便,器件本身又具有一系列的du特优点,所以在变频器中也发挥了非常重要的作用。  &nb
    锦正茂科技 2024-12-10 12:57 76浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 88浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 83浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 71浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦