一种灵活性很高的协议格式(附代码例子)

嵌入式ARM 2022-10-12 12:00

嵌入式开发中,常常会自定义一些协议格式,比如用于板与板之间的通信、客户端与服务端之间的通信等。

自定义的协议格式可能有很多种,今天给大家介绍一种很常用、实用、且灵活性很高的协议格式——ITLV格式

什么是ITLV格式?

大家可能看到网络上的很多文章用的是TLV(Tag、Length、Value)格式数据。实际中,可以根据实际需要进行修改。我们这里稍微改一下,实际上也是大同小异的。

我们这里的ITLV各字段的含义:

  • I:ID或Index,用于区分是什么数据。
  • T:Type,代表数据类型,如int、float等。
  • L:Length,表示数据的长度(Value的长度)。
  • V:Value,表示实际的数据。

其中,I、T、L是固定长度的,在制定具体的数据协议之前,需要评估好当前项目的数据会有多少、数据的最大长度是多少,考虑好后续数据扩展也可以保证协议通用。一般I设置为1~2字节,T设置为1字节,L设置为1~4字节。

下面我们制定一个格式:

实际中,如果在物联网系统中数据传输,我们用户自定义的协议字段可能就只包含如上四个字段就可以了。比如我们公司的云平台上的用户数据格式用的就是类似ITLV这样的格式。用户在制定协议时的协议字段包含如上字段就可以了。

没有包头做一些数据区分,也没有校验字段,只包含如上字段就能保证数据可靠传输吗?

因为端云通信采用MQTT,基于TCP,TCP的特点就是可靠的,网络协议中会带有校验。并且,实际在传输用户数据时,还会再用户数据之前增加一些字段区分这就是用户数据。所以,其实基于它的设备SDK来进行开发,操作的数据就是如上的数据。

但是,如果应用于板与板之间的通信,只包含如上字段自然是有风险的。我们至少还需要还要包头、校验字段。

实际中根据需要还可以增加其它字段,比如如果需要分包发送,还需要增加包号;如果多块板之间进行通信,还需要增加发送数据目标地址等。

这里我们增加包头与校验字段:

其中:

(1)Head固定为0x55、0xAA。

(2)Length为1字节,即Value最大为256B。

ITLV格式数据处理

下面以例子来演示ITLV格式数据的处理。

下面我们以上面我们制定的协议编写A板的组包、解析代码。

1、设计相关数据结构

首先,我们创建一个协议格式结构体:

#pragma pack(1) 
// 协议格式
typedef struct _protocol_format
{

    uint16_t head;    
    uint8_t id;
    uint8_t type;
    uint8_t length;
    uint8_t value[];
}protocol_format_t;

type字段的取值:

// TLV 数据类型type
typedef enum _tlv_type
{
    TLV_TYPE_UINT8,
    TLV_TYPE_INT8,
    TLV_TYPE_UINT16,
    TLV_TYPE_INT16,
    TLV_TYPE_UINT32,
    TLV_TYPE_INT32,
    TLV_TYPE_STRING,
    TLV_TYPE_FLOAT,
    TLV_TYPE_BYTE_ARR,   // 字节数组
}tlv_type_e;

下面设计我们的收、发数据结构,大致思路如下:

我们创建一个总的结构体,用于管理A板往B板发送及A板接受来自B板的数据:

// 总的协议数据
typedef struct _protocol_data
{

    protocol_id_e id;
    protocol_value_t value;
}protocol_data_t;

其中,成员id是一个枚举:

左右滑动查看全部代码>>>

// 数据ID
typedef enum _protocol_id
{
    // A板发往B板
    PROTOCOL_ID_A_TO_B_BASE = 0x00,
    PROTOCOL_ID_A_TO_B_CTRL_CMD,
    PROTOCOL_ID_A_TO_B_DATE_TIME,
    PROTOCOL_ID_A_TO_B_END = 0x7F,

    // B板发往A板
    PROTOCOL_ID_B_TO_A_BASE = 0x80,
    PROTOCOL_ID_B_TO_A_WORK_STATUS,
    PROTOCOL_ID_B_TO_A_END = 0xFF,
}protocol_id_e;

包含着A->B、B->A的ID,因为ID是用1个字节标识,收、发的ID各预留一半,新增的ID在各自的BASE ID及END ID之间添加。

成员value是一个联合体,用于管理A->B、B->A的value数据:

左右滑动查看全部代码>>>

// 所有协议数据value值
typedef union _protocol_value
{
    protocol_value_a_to_b_t a_to_b_value;
    protocol_value_b_to_a_t b_to_a_value;
}protocol_value_t;

a_to_b_value及b_to_a_value也是联合体,用于管理更细分的数据:

左右滑动查看全部代码>>>

// A板发往B板的数据value值
typedef union _protocol_value_a_to_b
{
    protocol_data_ctrl_cmd_t ctrl_cmd;
    protocol_data_time_t     date_time;
}protocol_value_a_to_b_t;

// B板发往A板的数据value值
typedef union _protocol_value_b_to_a
{
    protocol_data_work_status_t work_status;
}protocol_value_b_to_a_t;

更细分的数据:

左右滑动查看全部代码>>>

// 控制命令
typedef enum _ctrl_cmd
{
    CTRL_CMD_LED_ON,
    CTRL_CMD_LED_OFF
}ctrl_cmd_e;

typedef struct _protocol_data_ctrl_cmd
{

    ctrl_cmd_e cmd;
}protocol_data_ctrl_cmd_t;

// 时间数据
typedef struct _protocol_data_time
{

    int year;
    int mon;
    int mday;
    int hour;
    int min;
    int sec;
}protocol_data_time_t;

// 工作状态
typedef enum _work_status
{
    WORK_STATUS_NORMAL,
    WORK_STATUS_ERROR
}work_status_e;

typedef struct _protocol_data_work_status
{

    work_status_e status;
}protocol_data_work_status_t;

明确了我们需要进行交互的数据的类型之后,解析来我们就可以根据它们的特点来编写组包、解析函数了。

2、组包

大致思路如下:

组包函数:

左右滑动查看全部代码>>>

int protocol_data_packet(uint8_t *buf, uint16_t len, protocol_data_t *protocol_data)
{
    int ret = -1;
    int value_len = 0;
    int offset = 0;
    protocol_format_t *p_protocol_format = NULL;

    if (!buf || !protocol_data || len < PROTOCOL_MIN_LEN)
    {
        printf("Invalid input argument!\n");
        return ret;
    }

    // 通过ID来获取value的长度
    switch (protocol_data->id)
    {
        case PROTOCOL_ID_A_TO_B_CTRL_CMD:
        {
            printf("PROTOCOL_ID_A_TO_B_CTRL_CMD\n");
            value_len = sizeof(protocol_data->value.a_to_b_value.ctrl_cmd);
            printf("protocol_format.length = %d\n", value_len);
            break;
        }
        case PROTOCOL_ID_A_TO_B_DATE_TIME:
        {
            printf("PROTOCOL_ID_A_TO_B_DATE_TIME\n");
            value_len = sizeof(protocol_data->value.a_to_b_value.date_time);
            printf("value_len = %d\n", value_len);
            break;
        }
        
        default:
            break;
    }

    // 为协议格式数据申请内存
    p_protocol_format = (protocol_format_t *)malloc(sizeof(protocol_format_t) + value_len);
    if (NULL == p_protocol_format)
    {
        printf("malloc error\n");
        return ret;
    }

    // 填充协议数据各字段
    p_protocol_format->head = PROTOCOL_HEAD;
    p_protocol_format->id = protocol_data->id;
    p_protocol_format->type = TLV_TYPE_BYTE_ARR;
    p_protocol_format->length = value_len;
    if (p_protocol_format->length <= PROTOCOL_VALUE_MAX_LEN)
    {
        memcpy(p_protocol_format->value, &protocol_data->value.a_to_b_value, p_protocol_format->length);
    }
    else
    {
        printf("protocol_format.length > PROTOCOL_VALUE_MAX_LEN\n");
    }

    // 计算校验值
    uint32_t crc_data_len = sizeof(protocol_format_t) + value_len;
    uint16_t crc16 = crc16_x25_check((uint8_t*)p_protocol_format, crc_data_len);
    printf("crc16 = %#x\n", crc16);

    // struct -> buf
    memcpy(buf, p_protocol_format, crc_data_len);
    offset += crc_data_len;
    memcpy(buf + offset, &crc16, sizeof(uint16_t));
    offset += sizeof(uint16_t);

    // 释放内存
    free(p_protocol_format);
    p_protocol_format = NULL;

    return offset;
}

3、解包

大致思路如下:

解包函数:

左右滑动查看全部代码>>>

// 解包函数
void protocol_data_parse(protocol_data_t *protocol_data, uint8_t *buf, uint16_t len)
{
    protocol_format_t *p_protocol_format = NULL;

    if (!buf || !protocol_data || len < PROTOCOL_MIN_LEN)
    {
        printf("Invalid input argument!\n");
        return;
    }

    // 为协议格式数据申请内存
    int value_len = buf[PROTOCOL_LENGTH_INDEX];
    p_protocol_format = (protocol_format_t *)malloc(sizeof(protocol_format_t) + value_len);
    if (NULL == p_protocol_format)
    {
        printf("malloc p_protocol_format error\n");
        return;
    }

    // buf -> struct
    memcpy(p_protocol_format, buf, sizeof(protocol_format_t) + value_len);
    printf("protocol_data->id = %#x\n", p_protocol_format->id);

    // 通过数据ID来解析各对应的数据
    switch (p_protocol_format->id)
    {
        case PROTOCOL_ID_B_TO_A_WORK_STATUS:
        {
            printf("PROTOCOL_ID_B_TO_A_WORK_STATUS\n");
            uint8_t work_status_len = sizeof(protocol_data->value.b_to_a_value.work_status);
            if (p_protocol_format->length == work_status_len)
            {
                memcpy(&protocol_data->value.b_to_a_value.work_status, p_protocol_format->value, p_protocol_format->length);
            }
            else
            {
                printf("p_protocol_format->length error\n");
            }
            break;
        }
        
        default:
            break;
    }

    // 释放内存
    free(p_protocol_format);
    p_protocol_format = NULL;
}

4、CRC16校验

CRC16分很多种:CRC16-X25、CRC16-MODBUS、CRC16-XMODEM等。

这里我们使用CRC16-X25:

static const unsigned short crc16_table[256] = 
{
    0x00000x11890x23120x329b0x46240x57ad0x65360x74bf,
    0x8c480x9dc10xaf5a0xbed30xca6c0xdbe50xe97e0xf8f7,
    0x10810x01080x33930x221a0x56a50x472c0x75b70x643e,
    0x9cc90x8d400xbfdb0xae520xdaed0xcb640xf9ff0xe876,
    0x21020x308b0x02100x13990x67260x76af0x44340x55bd,
    0xad4a0xbcc30x8e580x9fd10xeb6e0xfae70xc87c0xd9f5,
    0x31830x200a0x12910x03180x77a70x662e0x54b50x453c,
    0xbdcb0xac420x9ed90x8f500xfbef0xea660xd8fd0xc974,
    0x42040x538d0x61160x709f0x04200x15a90x27320x36bb,
    0xce4c0xdfc50xed5e0xfcd70x88680x99e10xab7a0xbaf3,
    0x52850x430c0x71970x601e0x14a10x05280x37b30x263a,
    0xdecd0xcf440xfddf0xec560x98e90x89600xbbfb0xaa72,
    0x63060x728f0x40140x519d0x25220x34ab0x06300x17b9,
    0xef4e0xfec70xcc5c0xddd50xa96a0xb8e30x8a780x9bf1,
    0x73870x620e0x50950x411c0x35a30x242a0x16b10x0738,
    0xffcf0xee460xdcdd0xcd540xb9eb0xa8620x9af90x8b70,
    0x84080x95810xa71a0xb6930xc22c0xd3a50xe13e0xf0b7,
    0x08400x19c90x2b520x3adb0x4e640x5fed0x6d760x7cff,
    0x94890x85000xb79b0xa6120xd2ad0xc3240xf1bf0xe036,
    0x18c10x09480x3bd30x2a5a0x5ee50x4f6c0x7df70x6c7e,
    0xa50a0xb4830x86180x97910xe32e0xf2a70xc03c0xd1b5,
    0x29420x38cb0x0a500x1bd90x6f660x7eef0x4c740x5dfd,
    0xb58b0xa4020x96990x87100xf3af0xe2260xd0bd0xc134,
    0x39c30x284a0x1ad10x0b580x7fe70x6e6e0x5cf50x4d7c,
    0xc60c0xd7850xe51e0xf4970x80280x91a10xa33a0xb2b3,
    0x4a440x5bcd0x69560x78df0x0c600x1de90x2f720x3efb,
    0xd68d0xc7040xf59f0xe4160x90a90x81200xb3bb0xa232,
    0x5ac50x4b4c0x79d70x685e0x1ce10x0d680x3ff30x2e7a,
    0xe70e0xf6870xc41c0xd5950xa12a0xb0a30x82380x93b1,
    0x6b460x7acf0x48540x59dd0x2d620x3ceb0x0e700x1ff9,
    0xf78f0xe6060xd49d0xc5140xb1ab0xa0220x92b90x8330,
    0x7bc70x6a4e0x58d50x495c0x3de30x2c6a0x1ef10x0f78
};

uint16_t crc16_x25_check(uint8_t* data, uint32_t length)
{
 unsigned short crc_reg = 0xFFFF;
 
 while (length--)
 {
  crc_reg = (crc_reg >> 8) ^ crc16_table[(crc_reg ^ *data++) & 0xff];
 }
 
 return (uint16_t)(~crc_reg) & 0xFFFF;
}

5、测试代码

下面我们编写组包、解包测试代码:

  • 组包控制命令数据,并把组包之后的发送缓冲区中的数据打印出来。
  • 组包时间数据,并把组包之后的发送缓冲区中的数据打印出来。
  • 从一个模拟的工作状态接受缓冲区数据中解析工作状态数据并打印出来。

测试代码如:

左右滑动查看全部代码>>>

// 微信公众号:嵌入式大杂烩
#include    
#include 
#include "protocol_tlv.h"

int main(int arc, char *argv[])
{
    static uint8_t send_buf[PROTOCOL_MAX_LEN] = {0};
    protocol_data_t protocol_data_send = {0};
    int send_len = 0;

    printf("\n==============================test packet===========================================\n");
    // 模拟组包发送控制命令
    bzero(send_buf, sizeof(send_buf));
    bzero(&protocol_data_send, sizeof(protocol_data_t));
    protocol_data_send.id = PROTOCOL_ID_A_TO_B_CTRL_CMD;
    protocol_data_send.value.a_to_b_value.ctrl_cmd.cmd = CTRL_CMD_LED_OFF;
    send_len = protocol_data_packet(send_buf, PROTOCOL_MAX_LEN, &protocol_data_send);
    printf("send ctrl data = ");
    print_hex_data_frame(send_buf, send_len);

    // 模拟组包发送时间数据
    bzero(send_buf, sizeof(send_buf));
    bzero(&protocol_data_send, sizeof(protocol_data_t));
    protocol_data_send.id = PROTOCOL_ID_A_TO_B_DATE_TIME;
    protocol_data_send.value.a_to_b_value.date_time.year = 2022;
    protocol_data_send.value.a_to_b_value.date_time.mon = 8;
    protocol_data_send.value.a_to_b_value.date_time.mday = 20;
    protocol_data_send.value.a_to_b_value.date_time.hour = 8;
    protocol_data_send.value.a_to_b_value.date_time.min = 8;
    protocol_data_send.value.a_to_b_value.date_time.sec = 8;
    send_len = protocol_data_packet(send_buf, PROTOCOL_MAX_LEN, &protocol_data_send);
    printf("send date_time data = ");
    print_hex_data_frame(send_buf, send_len);

    printf("\n==============================test parse===========================================\n");
    // 模拟解析工作状态数据
    uint8_t work_status_buf[11] = {0x550xAA0x810x080x040x010x000x000x000xf20x88};
    protocol_data_t protocol_data_recv = {0};

    uint16_t calc_crc16 = crc16_x25_check(work_status_buf, sizeof(work_status_buf) - 2);
    uint16_t recv_crc16 = (uint16_t)(work_status_buf[10] << 8) | work_status_buf[9];

    if (calc_crc16 == recv_crc16)
    {
        protocol_data_parse(&protocol_data_recv, work_status_buf, sizeof(work_status_buf));
        printf("work_status = %d\n", protocol_data_recv.value.b_to_a_value.work_status.status);
    }

 return 0;
}

编译、运行:

对照着我们制定的协议,数据完全正确!

ITLV格式的其它用法

ITLV格式具有很强的灵活性,我们这里使用的数据类型Type为字节数组,其实使用字符串类型也很常用,比如为了协议具备更强的可读性、方便调试,可以在Value字段里再封装一层JSON格式数据。其实我觉得Type的选项只保留字节数组及字符串就够用了,可以满足所有情况。

当然,可能有些数据长度总是定长的,也可以用其它定长的类型。比如数据都是一些定长的类型,那么L字段也可以省略掉。实际中,比较通用的做法就是:全用字节数组或者全用字符串。别混着用,代码可能会很混乱。

END

来源:嵌入式大杂烩

版权归原作者所有,如有侵权,请联系删除。

推荐阅读
一个蓝牙实战项目的掏肺总结
I2C接口通讯实现方式,你掌握了几种?
printf()是如何与UART外设驱动函数“勾搭”起来的?

→点关注,不迷路←
嵌入式ARM 关注这个时代最火的嵌入式ARM,你想知道的都在这里。
评论
  • 在驾驶培训与考试的严谨流程中,EST580驾培驾考系统扮演着至关重要的数据角色。它不仅集成了转速监控、车速管理、转向角度测量、转向灯光控制以及手刹与安全带状态检测等多项功能,还通过高精度的OBD数据采集器实时捕捉车辆运行状态,确保学员在模拟及实际驾驶中的每一步操作都精准无误。EST580驾培驾考转速车速转向角转向灯光手刹安全带OBD数据采集器系统的重要性及其功能:1、提高评判效率:通过原车CAN协议兼容,不同车型通过刷写固件覆盖,不仅提高了考试的数字化、自动化程度,还减少了人为干预的安装需要,从
    lauguo2013 2024-12-09 16:51 101浏览
  •         在有电流流过的导线周围会感生出磁场,再用霍尔器件检测由电流感生的磁场,即可测出产生这个磁场的电流的量值。由此就可以构成霍尔电流、电压传感器。因为霍尔器件的输出电压与加在它上面的磁感应强度以及流过其中的工作电流的乘积成比例,是一个具有乘法器功能的器件,并且可与各种逻辑电路直接接口,还可以直接驱动各种性质的负载。因为霍尔器件的应用原理简单,信号处理方便,器件本身又具有一系列的du特优点,所以在变频器中也发挥了非常重要的作用。  &nb
    锦正茂科技 2024-12-10 12:57 69浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 89浏览
  •         霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子
    锦正茂科技 2024-12-10 11:07 64浏览
  • 本文介绍Linux系统(Ubuntu/Debian通用)挂载exfat格式U盘的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。修改对应的内核配置文件# 进入sdk目录cdrk3562_linux# 编辑内核配置文件vi./kernel-5.10/arch/arm64/configs/rockchip_linux_defconfig注:不清楚内核使用哪个defc
    Industio_触觉智能 2024-12-10 09:44 89浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 91浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 68浏览
  • 肖特基具有很多的应用场景, 可以做同步整流,防止电流倒灌和电源反接等,但是随着电源电流的增大,肖特基导通正向压降0.3~0.7v的劣势也越发明显,产生了很多的热,对于工程师的散热设计是个考验,增加了工程师的设计难度和产品成本,目前一种新的理想二极管及其控制器,目前正在得到越来越广泛的应用- BMS,无人机,PLC,安防,家电,电动工具,汽车等都在快速普及理想二极管有三种架构,内置电荷泵的类似无锡明芯微MX5050T这种,驱动能力会弱点,静态功耗200uA,外置电荷泵MX74700T的这种驱动能力
    王萌 2024-12-10 08:51 85浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 129浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 78浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 65浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦