什么是PFMEA失效分析中的失效链模型?

原创 iCoastline海岸线 2021-05-14 18:18


专栏简介

PFMEA是“过程失效模式与后果分析”的英文“Process Failure Mode and Effects Analysis”的缩写。为了更好地促进AQP PFMEA软件的应用,我们将以系列文章分享运用AQP PFMEA软件有效开展PFMEA工作的理念和方法,同时系统性介绍AQP PFMEA软件的特色和具体使用方法,并指导使用者如何有效开展PFMEA工作。



为每个过程步骤/操作执行失效分析是风险分析的基础。


对于具体的失效,要考虑三个方面:

失 效 后 果

FE: Failure Effects

失 效 模 式

FM: Failure Mode

失 效 原 因

FC: Failure Cause


其实这三个方面都算是失效,只是定位不同,基于要求定位出来的失效就是失效模式,说的更精确些:基于功能要求识别出来的失效的表现形式就是失效模式。


包括汽车行业在内的很多FMEA分析,表格中的「要求」没有单列开来,而是和「功能」混在了一起,这导致在填写时仅填写了功能没有填写要求,所以最终文件中呈现出来的「失效模式」信息较为混乱。



■ 失效链模型  



参照以上失效链,焦点要素就是所聚焦的需要分析的过程步骤/操作的功能及其要求。


当我们基于失效模式看它导致的后果,这时失效模式是“因”,失效后果就是失效模式的“果”


为什么失效模式会产生?原因是什么?再基于失效模式回查原因,这时失效模式是“果”,失效原因就是失效模式的“因”


这里要强调一下,在做失效分析的时候,失效原因要找本过程步骤/本操作可纠正可控制的原因


因此,在PFMEA的失效分析中,都是假定来料是正确的,旨在明确不要在本过程步骤/本操作不可控制的来料上找原因,要找本过程步骤/本操作可纠正可控制的原因。


举个日常工作的例子:

比如工厂规定员工早上八点上班打卡,用技术性语言来描述上班的要求就是“不晚于八点刷卡”,那失效模式就有两种,一种是“晚于八点刷卡”,另一种是“没有刷卡”;


为什么会“晚于八点刷卡”?可能有人会说是因为“堵车”,但堵车并不是员工自己可以控制的,这里要分析的失效原因应该是“出发晚了”或“走了一条容易堵车的路线”,针对这一失效原因如何改进?可以早一点出发或者经过试验换一条不容易堵车的路线。


手册中还提到:


假如历史上显示来料有问题要做例外处理。


比如一批来料不满足规格要求,尺寸存在略微偏大或过小的情况,但企业还是把这批料收了,这时候做例外处理的意思是,需要在生产作业时保证该物料仍能正常加工或装配,本质上还是认为来料是合格的,只不过对后续的工艺要求更高。


另外,建议大家在找失效原因的时候先找直接原因,这并不表示不关心根本原因,而是直接原因与失效模式之间能更好地做因果检验,避免找错失效原因。


而要解决一个问题,针对根本原因采取措施是最有效的,所以在之后的预防措施,最好是针对根本原因所采取的。



失效因果链是一环扣一环的,基于失效模式我们可以找到它的直接原因,通过直接原因还可以找到直接原因的原因,进一步往下找一直到根本原因……失效后果的识别同理。


在整个失效链中,失效原因也是失效后果的原因,但不是直接原因,因为在这个因果链中至少他们之间还相隔一个失效模式。


之所以强调这个关系,这并不是在做文字游戏,而是要告诉大家,失效分析很重要的步骤就是先要把失效模式定位清楚,否则错把失效原因当作失效模式,看似也具有因果关系,却难以完成准确的失效分析。


在做失效分析时,建议多做因果关系的检验,避免出现因果关系不成立的情况。


失效链中的焦点要素是失效模式,并基于该失效模式识别相关联的失效后果和失效原因,基于不同的聚焦点,同一种失效可能具有不同的角色,可能被视为失效后果、也可能被视为失效模式或失效原因。



■ 潜在失效模式



失效模式被定义为过程可能导致产品不能交付或不能提供预期的功能的方式,应当以技术术语来描述失效模式,而不是顾客明显易见的症状。


潜在失效模式分以下几类,包括:


◐  功能丧失/操作不能执行

  部分功能-操作未完成/未执行到位

  功能退化

  过度功能-太多太高

  间歇功能-操作不一致

  操作不稳定

  非预期功能-错误操作

◐  错误的零件被安装(注:基于基本操作分析时,不会出现此失效模式)

功能过早/延迟 - 操作太早/太晚


典型的失效模式可能但不仅限于以下情形:


◐  孔太浅、太深、错过位置或离开位置

  表面脏

  表面光洁度太粗糙

◐  连接器针销错位

  连接器未完全到位

  放行坏零件,或拒收好零件

  标签缺失

  条码不可读

  ECU闪烁提示错误软件


典型的过程失效模式可分类为:


◐  制造/加工:尺寸、形位公差(超出公差),表面缺陷

装配:松脱,零件缺失,方向错误

接收/检验:接收坏的采购件,在接收拒收好的零件

测试/检验:接收坏的零件,拒收好的零件


潜在失效模式示例:



在失效分析里面,绝对不可以出现“加强”二字,也不要出现“操作失误”、“机器故障”等模糊性语言,“错误”、“正确”这样的描述要尽量少用,应该用更准确的技术性语言进行描述。


潜在失效模式的识别要点:


◐  不能满足设计意图/过程要求的表现形式

  是对失效的技术性描述,而不是顾客觉察到的症状

  不要列入无价值(不会或不可能发生)的失效模式

  基于每一个过程步骤/操作的功能要求列出每一潜在失效模式

  应假定零件/材料(incoming parts/materials)是合格的(当历史数据表明来料存在质量问题,FMEA团队可予以例外考虑,即在来料当前的质量状况下,操作仍应该满足相应的质量要求。)



扫码添加海岸君

免费获取


*版权声明:本专栏所介绍的AQP PFMEA知识、软件内容及其逻辑和方法其知识产权归属江苏海岸线互联网科技有限公司和上海耕因智能科技发展中心联合所有。未经授权许可,其中的任何部分都不得被抄袭、复制或被用于软件开发之用途!


THE END


iCoastline海岸线 让中国工业软件助力中国质造,赋能世界智造
评论 (0)
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 112浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 236浏览
  • REACH和RoHS欧盟两项重要的环保法规有什么区别?适用范围有哪些?如何办理?REACH和RoHS是欧盟两项重要的环保法规,主要区别如下:一、核心定义与目标RoHS全称为《关于限制在电子电器设备中使用某些有害成分的指令》,旨在限制电子电器产品中的铅(Pb)、汞(Hg)、镉(Cd)、六价铬(Cr6+)、多溴联苯(PBBs)和多溴二苯醚(PBDEs)共6种物质,通过限制特定材料使用保障健康和环境安全REACH全称为《化学品的注册、评估、授权和限制》,覆盖欧盟市场所有化学品(食品和药品除外),通过登
    张工13144450251 2025-03-31 21:18 160浏览
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 104浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 204浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 178浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 235浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 221浏览
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 240浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 170浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 159浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 223浏览
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 170浏览
  •        在“软件定义汽车”的时代浪潮下,车载软件的重要性日益凸显,软件在整车成本中的比重逐步攀升,已成为汽车智能化、网联化、电动化发展的核心驱动力。车载软件的质量直接关系到车辆的安全性、可靠性以及用户体验,因此,构建一套科学、严谨、高效的车载软件研发流程,确保软件质量的稳定性和可控性,已成为行业共识和迫切需求。       作为汽车电子系统领域的杰出企业,经纬恒润深刻理解车载软件研发的复杂性和挑战性,致力于为O
    经纬恒润 2025-03-31 16:48 109浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦