一文吃透计算机中的高速缓存

嵌入式ARM 2022-10-10 12:00
  • 1. 什么是缓存

  • 2. 缓存的定义

  • 3. 计算机中的高速缓存

    • 3.1 高速缓存相关名词

    • 3.2 计算机中的高速缓存存储器模型

    • 3.3 计算机中有哪些缓存

    • 3.4 硬件读取高速缓存的过程

  • 4. 直接映射高速缓存

    • 4.1 组选择

    • 4.2 行匹配

    • 4.3 字选择

    • 4.4 模拟直接映射缓存

    • 4.5 直接映射高速缓存的缺陷

  • 5. 两路相联高速缓存

    • 5.1 组选择

    • 5.2 行匹配

    • 5.3 字选择

    • 5.4 模拟两路相联高速缓存

  • 6. 全相联高速缓存

  • 7. 真实计算机系统中的缓存

  • 8. 缓存的评价指标

    • 8.1 不命中率

    • 8.2 命中率

    • 8.3 命中时间

    • 8.4 未命中惩罚

  • 9. 总结

1. 什么是缓存

  缓存又叫高速缓存,是计算机存储器中的一种,本质上和硬盘是一样的,都是用来存储数据和指令的 。它们最大的区别在于读取速度的不同。程序一般是放在内存中的,当CPU执行程序的时候,执行完一条指令需要从内存中读取下一条指令,读取内存中的指令要花费100000个时钟周期(缓存读取速度为200个时钟周期,相差500倍),如果每次都从内存中取指令,CPU运行时将花费大量的时间在读取指令上。这显然是一种资源浪费。

  如何解决这个问题呢?有人肯定会问,直接把程序存储在缓存中不行吗?  

  答案是可以的。但是,缓存的造价太贵了。具体如下图所示。以2015年的售价为例,1GB SRAM的价格大约为327680美元,而1GB 普通硬盘的价格仅仅为0.03美元。用缓存来存储程序成本太高了,得不偿失。

SRAM和DISK价格比较

  于是,有人就提出了这样一种方法,在CPU和内存之间添加一个高速内存, 这个高速内存容量小,只用来存储CPU执行时常用的指令。既保证了硬件成本,又提高了CPU的访问速度。这个高速内存就是缓存(高速缓存)。

2. 缓存的定义

  高速缓存是一个小而快速的存储设备 ,它作为存储在更大更慢的设 备中的数据对象的缓冲区域。使用高速缓存的过程称为缓存

  具体如下图所示,主存可以作为一个存储设备,L3是主存的缓冲区域,从L3存取数据的过程就叫做缓存。

存储器的层次结构

3. 计算机中的高速缓存

3.1 高速缓存相关名词

  如下图所示,数据总是以块为单位 在高速缓存和主存之间来回复制。

缓存和内存的数据交换

  如果我们的程序请求一个数据字,这个数据字存储在编号为10的块中。将分以下几种情况考虑:

  1. 高速缓存行中为空,这叫做冷不命中  

  2.高速缓存中有数据块,但没有数据块10,这叫做缓存不命中 。接下来缓存请求主存将该块复制到高速缓存,高速缓存接收到之后将替换一个现有的数据块,从而存储新的数据块在高速缓存中。最后,高速缓存将数据块10返回给CPU。

  3. 高速缓存中有数据,将内存中的数据块放置到高速缓存中时,发生了冲突,这叫做冲突不命中

放置策略中最常用的是:第k+1层的块i必须放在第k层的块(i mod 4)中。比如,第k+1层的0,4,8,12会映射到第k层的块0。块1,5,9,13会映射到块1。

  4. 缓存中有数据块10,则直接返回给CPU。这叫做缓存命中

3.2 计算机中的高速缓存存储器模型

  高速缓存完全由硬件管理,硬件逻辑必须要知道,如何查找缓存中的块,并确定是否包含特定块。因此,必须以非常严格且简单的方式去构建高速缓存。在计算机中,高速缓存模型如下图所示。

计算机中的高速缓存模型

  我们可以将高速缓存存储器视为有个高速缓存组的数组 。每个组包含高速缓存行 。每个行是由一个字节的数据块组成的。

  一般而言,高速缓存的结构可以用元组(S,E,B,m)来描述。高速缓存的大小(或容量)C指的是所有块的大小的和。标记位和有效位不包括在内 。因此,C=S×E×B。

  每个高速缓存存储器有m位,可以组成个不同的地址,。每个数据块由以下三部分构成。

  有效位:有效位为t位,t一般为1,指明这个行是否包含有效信息。

  标记位:标记位为s位。唯一的标识了存储在高速缓存中的块(数组索引)。

  块偏移:数据块为字节。指明CPU请求的内容在数据块中的偏移。

地址和计算机缓存模型

  下面对以上内容出现的参数做个总结:

参数描述
S=2^s
组数
E
每个组的行数
B=2^b
块大小(字节)
m=log2(M)
物理地址位数
M=2^m
内存地址的最大数量
s=log2(S)
组索引位数量
b=log2(B)
块偏移位数量
t=m-(s+b)
标记位数量
C=B*E*S
不包括像有效位和标记位这样开销的高速缓存大小(字节)

3.3 计算机中有哪些缓存

 下表为现代计算机中用到的各种缓存。

类型缓存什么被缓存在何处延迟(周期数)由谁管理
CPU寄存器4字节或8字节芯片上的CPU寄存器0编译器
TLB地址翻译芯片上的TLB0硬件MMU
L1高速缓存64字节块芯片上的L1高速缓存4硬件
L2高速缓存64字节块芯片上的L2高速缓存10硬件
L3高速缓存64字节块芯片上的L3高速缓存50硬件
虚拟内存4KB页主存200硬件
缓冲区缓存部分文件主存200OS
磁盘缓存磁盘扇区磁盘控制器100000控制器固件
网络缓存部分文件本地磁盘10000000NFS客户
浏览器缓存Web页本地磁盘10000000Web浏览器
Web缓存Web页远程服务器磁盘1000000000Web代理服务器

3.4 硬件读取高速缓存的过程

  当一条加载指令指示CPU从主存地址A中读取一个字w时,会将该主存地址A发送到高速缓存中,则高速缓存会根据以下步骤判断地址A是否命中:

  组选择:根据地址划分,将中间的s位表示为无符号数作为组的索引 ,可得到该地址对应的组。

  行匹配:根据地址划分,可得到t位的标志位,由于组内的任意一行都可以包含任意映射到该组的数据块,所以就要线性搜索组中的每一行,判断是否有和标志位匹配且设置了有效位的行 ,如果存在,则缓存命中,否则缓冲不命中。

  字抽取:如果找到了对应的高速缓存行,则可以将b位表示为无符号数作为块偏移量 ,得到对应位置的字。

  当高速缓存命中时,会很快抽取出字w,并将其返回给CPU。如果缓存不命中,CPU会进行等待,高速缓存会向主存请求包含字w的数据块,当请求的块从主存到达时,高速缓存会将这个块保存到它的一个高速缓存行中,然后从被存储的块中抽取出字w,将其返回给CPU。

4. 直接映射高速缓存

  上面我们介绍了计算机中的高速缓存模型,我们可以根据每个组的高速缓存行数E,将高速缓存分成不同的类型。下面我们看下直接映射高速缓存(E=1)的具体例子。

4.1 组选择

  组选择示意图如下所示。假设有 S 组,每组由一行组成,缓存块为8字节。CPU发出地址要取数据字,高速缓存将该地址分解为三部分,对于图中的地址来说,块偏移量为4。组索引是 1 ,粉红色的为t位标记位。因此,高速缓存提取的组索引为 1,即图中第二行。

直接映射高速缓存组选择

4.2 行匹配

  然后,检查地址中的标记位与缓存行中的标记位是否匹配。如果匹配,将进行下一步字选择。如果不匹配,则表示未命中。在未命中时,高速缓存必须从内存中重新取数据块, 在行中覆盖此块。

直接映射高速缓存行匹配

4.3 字选择

  当标记位匹配时,表示命中,接着检查地址中的块偏移为4,即要从缓存行数据块的第5位开始取值,并返回给CPU。

直接映射高速缓存字选择

4.4 模拟直接映射缓存

  下面,我们模拟下直接映射高速缓存的过程,以便加深理解高速缓存是如何工作的。假设,内存地址为4字节,S=4组,E=1行/组,B=2字节/块。其结构图如下所示。

模拟直接映射高速缓存地址结构图

  我们模拟CPU要从高速缓存中读取地址为0,1,7,8,0的数据。下面是具体的过程。

地址二进制是否命中
0[](t=0,s=00,b=0)
1[](t=0,s=00,b=1)
7[](t=0,s=11,b=1)
8[](t=1,s=00,b=0)
0[](t=00,s=0,b=0)

  1. 读地址0的数据。标记位为0,索引位为00,偏移位为0,块号为0。缓存行中没有数据,组0的有效位为0,地址的标记位和组0的标记位不匹配,因此,未命中。然后,高速缓存从内存中取出块0,块1, 共2字节,并存储在组0中。具体如下图所示。

模拟直接映射高速缓存读地址0的数据

  2. 读地址1的数据。标记位为0,索引位为00,偏移位为1,块号1。缓存行中已有数据数据,组0的有效位为1,地址1的标记位和组0的标记位匹配,因此,命中。具体如下图所示。

模拟直接映射高速缓存读地址1的数据

  3. 读地址7的数据。标记位为0,索引位为11(3),偏移位为1,块号为3。缓存行中有数据,组3的有效位为0,地址的标记位和组0的标记位不匹配,因此,未命中。然后,高速缓存从内存中取出块6,块7, 共2字节,并存储在组3中。具体如下图所示。

模拟直接映射高速缓存读地址7的数据

   4. 读地址8的数据。标记位为1,索引位为00,偏移位为0,块号为4。缓存行中有数据,组0的有效位为1,地址的标记位和组0的标记位不匹配,因此,未命中。然后,高速缓存从内存中取出块8,块9, 共2字节,并存储在组0中。具体如下图所示。

模拟直接映射高速缓存读地址8的数据

   5. 读地址0的数据。标记位为0,索引位为00,偏移位为0,块号为0。缓存行中有数据,组0的有效位为1,地址的标记位和组0的标记位不匹配,因此,未命中。然后,高速缓存从内存中取出块0,块1, 共2字节,并存储在组0中。具体如下图所示。

模拟直接映射高速缓存再次读地址0的数据

  最终结果如下:缓存命中率为20%。

地址二进制是否命中
0[](t=0,s=00,b=0)
1[](t=0,s=00,b=1)
7[](t=0,s=11,b=1)
8[](t=1,s=00,b=0)
0[](t=00,s=0,b=0)

注意:块大小为2字节,所以从内存中取数据总是以偶数倍开始的,所以会看到M[8-9],而不是M[7-8]。

  如果你看懂了上述高速缓存的整个过程,考虑下如何编程来模拟高速缓存呢?后面的文章我会详细讲解如何用C语言模拟高速缓存,欢迎关注我的公众号【嵌入式与Linux那些事】,第一时间获取更新。

4.5 直接映射高速缓存的缺陷

  观察以上过程其实可以发现,在第5步,读地址0的数据的时候,我们又得重新从内存中取数据到缓存行中。在读地址8的数据的时候,M[8-9]替换了缓存行中的M[0-1]。

  最主要的原因是每一个组中只允许存放一行缓存。假设,E = 2,每组中有2个缓存行,M[8-9]和M[0-1]就有很大可能同时存在于组0中。我们在第5步访问时,就不需要重新从内存中取数据了。因此,就有了E = 2的两路相联高速缓存。

5. 两路相联高速缓存

  直接映射高速缓存中冲突不命中造成的问题源于每个组只有一行这个限制。组相联高速存放松了这条限制,所以每个组都保存有多于一个的高速缓存行。如下图所示为两路相联的高速缓存。

5.1 组选择

  它的组选择与直接映射高速缓存的组选择一样,组索引位标识组。具体如下图所示,这里不再赘述。

两路相联高速缓存组选择

5.2 行匹配

  组相联高速缓存中的行匹配比直接映射高速缓存中的更复杂,因为它必须每次检查多个行 的标记位和有效位,以确定所请求的字是否在集合中。具体如下图所示。

两路相联高速缓存行匹配

5.3 字选择

  字选择的过程和直接映射高速缓存中的方式一样,这里就不再赘述。

两路相联高速缓存字选择

5.4 模拟两路相联高速缓存

  下面,我们模拟下两路相联高速缓存的过程,以便加深理解高速缓存是如何工作的。假设,内存地址为4字节,S=2组,E=2行/组,B=2字节/块。其结构图如下所示。

两路相联高速缓存地址结构

  我们模拟CPU要从高速缓存中读取地址为0,1,7,8,0的数据。下面是具体的过程。

地址二进制是否命中
0[] (t=00,s=0,b=0)
1[](t=00,s=0,b=1)
7[](t=01,s=1,b=1)
8[](t=10,s=0,b=0)
0[](t=00,s=0,b=0)

  1. 读地址0的数据。标记位为00,索引位为0,偏移位为0,块号为0。缓存行中没有数据,组0的有效位为0,地址的标记位和组0的第一行和第二行的标记位都不匹配,因此,未命中。然后,高速缓存从内存中取出块0,块1, 共2字节,并存储在组0第一行中。具体如下图所示。

模拟两路相联高速缓存读地址0的数据

  2. 读地址1的数据。标记位为00,索引位为0,偏移位为1,块号为1。缓存行中已有数据数据,组0的第一行有效位为1,地址1的标记位和组0的第一行标记位匹配,因此,命中。具体如下图所示。

模拟两路相联高速缓存读地址1的数据

  3. 读地址7的数据。标记位为01,索引位为1,偏移位为1,块号为1。缓存行中有数据,组1的有效位为0,地址的标记位和组1中的第一行和第二行的标记位不匹配,因此,未命中。然后,高速缓存从内存中取出块6,块7, 共2字节,并存储在组1中。具体如下图所示。

模拟两路相联高速缓存读地址7的数据

   4. 读地址8的数据。标记位为10,索引位为0,偏移位为0,块号为0。缓存行中有数据,组0的第一行有效位为1,第二行有效位为0,地址的标记位和组0的第一行和第二行的标记位不匹配,因此,未命中。然后,高速缓存从内存中取出块8,块9, 共2字节,并存储在组0的第二行中。具体如下图所示。

模拟两路相联高速缓存读地址8的数据

   5. 读地址0的数据。标记位为00,索引位为0,偏移位为0,块号为0。缓存行中有数据,组0的第一行有效位为1,地址的标记位和组0的第一行的标记位匹配,因此,命中。具体如下图所示。

模拟两路相联高速缓存再次读地址0的数据
地址二进制是否命中
0[] (t=00,s=0,b=0)
1[](t=00,s=0,b=1)
7[](t=01,s=1,b=1)
8[](t=10,s=0,b=0)
0[](t=00,s=0,b=0)

  两路相联高速缓存与直接映射高速缓存相比,在每组中增加了一行,缓存命中率提升了15%。避免了缓存频繁从内存中存取数据的情况,提高了程序运行速度。

6. 全相联高速缓存

  全相联高速缓存中的行匹配和字选择与组相联高速缓存中的是一样的,过程就不再赘述,其结构图如下所示。

全相联高速缓存结构示意图

相联度越高越好吗?

答案是否定的。较高的相联度会造成较高的成本。实现难度大,价格昂贵,而且很难使之速度变快。较高的相联度会增加命中时间,因为复杂性增加了,另外,还会增加不命中处罚,因为选择牺牲行的复杂性也增加了。

相联度的选择最终变成了命中时间和不命中处罚之问的折中。一般来讲,高性能系统会为L1高速缓存选择较低的相联度(这里的不命中处罚只是几个周期),而在不命中处罚比较高的较低层上使用比较小的相联度。例如, Intel Core i7系统中,L和L2高速缓存是8路组相联的,而L3高速缓存是16路组相联的。

7. 真实计算机系统中的缓存

  在此之前,我们一直假设高速缓存只保存数据。不过,实际上,高速缓存既保存数据,也保存指令。只保存指令的高速缓存称为 i-cache 。只保存程序数据的高速缓存称为 d-cache 。既保存指令又包括数据的高速缓存称为 统一的高速缓存

  如下图所示为 Intel Core i7处理器的高速缓存层次结构。每个CPU芯片有四个核。每个核有自己的L1 i-cache, L1 d-cache和L2统一的高速缓存。所有的核共享片上L3统一的高速缓存。其具体参数如下表所示。

真实计算机的缓存模型
缓存大小内部结构访问时间
L132KB8路相联4时钟
L2256KB8路相联10时钟
L38M16路相联40-75时钟

8. 缓存的评价指标

  最后介绍下衡量高速缓存性能的一些指标:

8.1 不命中率

  在一个程序执行或程序的一部分执行期间,内存引用不命中的比率,它等于: 不命中数量/引用数量。

8.2 命中率

  命中的内存引用比率。它等于:  1-不命中率。

8.3 命中时间

  从高速缓存传送一个字到CPU所需的时间,包括组选择、行确认和字选择的时间。一般来讲,L1缓存的命中时间为:4个时钟。L2缓存的命中时间为:10个时钟。

8.4 未命中惩罚

  未命中需要的额外时间。对于主存来说,一般为 50 ~ 200个时钟周期。

举个例子:

假设缓存命中时间为1个时钟周期,缓存未命中惩罚为100个时钟周期。

下面计算下97%缓存命中率和99%的缓存命中率的平均访问时间为多少?计算公式为命中时间加上未命中处罚乘以百分系数。

97%的命中率:时钟。

99%的命中率:时钟。

结论:命中率增加2%,平均访问时间减少了50%。

9. 总结

  计算机中存在着各种各样的缓存,比如, 文件缓存 把一些需要高速存取的变量缓存在内存中,每次访问直接读出即可。 浏览器缓存 根据一套与服务器约定的规则进行工作,如果在浏览过程中前进或后退时访问到同一个图片,这些图片可以从浏览器缓存中调出而即时显示。数据库缓存 经常需要从数据库查询的数据、或经常更新的数据放入到缓存中,这样下次查询时,直接从缓存直接返回,减轻数据库压力。

  我们了解这么多基本概念有什么用呢?如果我们理解了计算机系统是如何将数据在内存中组织和移动的,那么在写程序时就可以把数据项存储在合适的位置,CPU能更快地访问到它们,提高程序的执行效率。

END

来源:嵌入式与Linux那些事


版权归原作者所有,如有侵权,请联系删除。

推荐阅读
可怕!CPU暗藏了这些未公开的指令!
I2C接口通讯实现方式,你掌握了几种?
printf()是如何与UART外设驱动函数“勾搭”起来的?

→点关注,不迷路←
嵌入式ARM 关注这个时代最火的嵌入式ARM,你想知道的都在这里。
评论
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 666浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 203浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 123浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 210浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 18浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 145浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 74浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 159浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 194浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 178浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 321浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 617浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 134浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦