开关电源如何选择合适的MOSFET?

电子芯期天 2022-10-09 08:00

DC/DC开关控制器的MOSFET选择是一个复杂的过程。仅仅考虑MOSFET的额定电压和电流并不足以选择到合适的MOSFET。要想让MOSFET维持在规定范围以内,必须在低栅极电荷和低导通电阻之间取得平衡。在多负载电源系统中,这种情况会变得更加复杂。


图1:降压同步开关稳压器原理图。


DC/DC开关电源因其高效率而广泛应用于现代许多电子系统中。例如,同时拥有一个高侧FET和低侧FET的降压同步开关稳压器,如图1所示。这两个FET会根据控制器设置的占空比进行开关操作,旨在达到理想的输出电压。降压稳压器的占空比方程式如下:

1.占空比(高侧FET,上管)=Vout/(Vin*效率)

2.占空比(低侧FET,下管)=1–DC(高侧FET)


FET可能会集成到与控制器一样的同一块芯片中,从而实现一种最为简单的解决方案。但是,为了提供高电流能力及(或)达到更高效率,FET需要始终为控制器的外部元件。这样便可以实现最大散热能力,因为它让FET物理隔离于控制器,并且拥有最大的FET选择灵活性。它的缺点是FET选择过程更加复杂,原因是要考虑的因素有很多。


一个常见问题是“为什么不让这种10A FET也用于我的10A设计呢?”答案是这种10A额定电流并非适用于所有设计。


选择FET时需要考虑的因素包括额定电压、环境温度、开关频率、控制器驱动能力和散热组件面积。关键问题是,如果功耗过高且散热不足,则FET可能会过热起火。我们可以利用封装/散热组件ThetaJA或者热敏电阻、FET功耗和环境温度估算某个FET的结温,具体方法如下:


3.Tj=ThetaJA*FET功耗(PdissFET)+环境温度(Tambient)

它要求计算FET的功耗。这种功耗可以分成两个主要部分:AC和DC损耗。这些损耗可以通过下列方程式计算得到:


4.AC损耗:AC功耗(PswAC)=½*Vds*Ids*(trise+tfall)/Tsw
其中,Vds为高侧FET的输入电压,Ids为负载电流,trise和tfall为FET的升时间和降时间,而Tsw为控制器的开关时间(1/开关频率)。


5.DC损耗:PswDC=RdsOn*Iout*Iout*占空比

其中,RdsOn为FET的导通电阻,而Iout为降压拓扑的负载电流。


其他损耗形成的原因还包括输出寄生电容、门损耗,以及低侧FET空载时间期间导电带来的体二极管损耗,但在本文中我们将主要讨论AC和DC损耗。


开关电压和电流均为非零时,AC开关损耗出现在开关导通和关断之间的过渡期间。图2中高亮部分显示了这种情况。根据方程式4),降低这种损耗的一种方法是缩短开关的升时间和降时间。通过选择一个更低栅极电荷的FET,可以达到这个目标。另一个因数是开关频率。开关频率越高,图3所示升降过渡区域所花费的开关时间百分比就越大。因此,更高频率就意味着更大的AC开关损耗。所以,降低AC损耗的另一种方法便是降低开关频率,但这要求更大且通常也更昂贵的电感来确保峰值开关电流不超出规范。


图2:AC损耗图。

图3:开关频率对AC损耗的影响。


开关处在导通状态下出现DC损耗,其原因是FET的导通电阻。这是一种十分简单的I2R损耗形成机制,如图4所示。但是,导通电阻会随FET结温而变化,这便使得这种情况更加复杂。所以,使用方程式3)、4)和5)准确计算导通电阻时,就必须使用迭代方法,并要考虑到FET的温升。降低DC损耗最简单的一种方法是选择一个低导通电阻的FET。另外,DC损耗大小同FET的百分比导通时间成正比例关系,其为高侧FET控制器占空比加上1减去低侧FET占空比,如前所述。由图5我们可以知道,更长的导通时间就意味着更大的DC开关损耗,因此,可以通过减小导通时间/FET占空比来降低DC损耗。例如,如果使用了一个中间DC电压轨,并且可以修改输入电压的情况下,设计人员或许就可以修改占空比。


图4:DC损耗图。


图5:占空比对DC损耗的影响。


尽管选择一个低栅极电荷和低导通电阻的FET是一种简单的解决方案,但是需要在这两种参数之间做一些折中和平衡。低栅极电荷通常意味着更小的栅极面积/更少的并联晶体管,以及由此带来的高导通电阻。另一方面,使用更大/更多并联晶体管一般会导致低导通电阻,从而产生更多的栅极电荷。这意味着,FET选择必须平衡这两种相互冲突的规范。另外,还必须考虑成本因素。


低占空比设计意味着高输入电压,对这些设计而言,高侧FET大多时候均为关断,因此DC损耗较低。但是,高FET电压带来高AC损耗,所以可以选择低栅极电荷的FET,即使导通电阻较高。低侧FET大多数时候均为导通状态,但是AC损耗却最小。这是因为,导通/关断期间低侧FET的电压因FET体二极管而非常地低。因此,需要选择一个低导通电阻的FET,并且栅极电荷可以很高。图7显示了上述情况。


图6:低占空比设计的高侧和低侧FET功耗。


如果我们降低输入电压,则我们可以得到一个高占空比设计,其高侧FET大多数时候均为导通状态,如图7所示。这种情况下,DC损耗较高,要求低导通电阻。根据不同的输入电压,AC损耗可能并不像低侧FET时那样重要,但还是没有低侧FET那样低。因此,仍然要求适当的低栅极电荷。这要求在低导通电阻和低栅极电荷之间做出妥协。就低侧FET而言,导通时间最短,且AC损耗较低,因此我们可以按照价格或者体积而非导通电阻和栅极电荷原则,选择正确的FET。


图7:高占空比设计的高侧和低侧FET功耗。


假设一个负载点(POL)稳压器时我们可以规定某个中间电压轨的额定输入电压,那么最佳解决方案是什么呢,是高输入电压/低占空比,还是低输入电压/高占空比呢?使用不同输入电压对占空比进行调制,同时查看FET功耗情况。


图8中,高侧FET反应曲线图表明,占空比从25%增至40%时AC损耗明显降低,而DC损耗却线性增加。因此,35%左右的占空比,应为选择电容和导通电阻平衡FET的理想值。不断降低输入电压并提高占空比,可以得到最低的AC损耗和最高的DC损耗,就此而言,我们可以使用一个低导通电阻的FET,并折中选择高栅极电荷。如低侧FET图9所示,控制器占空比由低升高时DC损耗线性降低(低侧FET导通时间更短),高控制器占空比时损耗最小。整个电路板的AC损耗都很低,因此任何情况下都应选择使用低导通电阻的FET。


图8:高侧FET损耗与占空比的关系。


图9:低侧FET损耗与控制器占空比的关系。请注意:低侧FET占空比为1-控制器占空比,因此低侧FET导通时间随控制器占空比增加而缩短。


图10显示了我们将高侧和低侧损耗组合到一起时总效率的变化情况。我们可以看到,这种情况下,高占空比时组合FET损耗最低,并且效率最高。效率从94.5%升高至96.5%。不幸的是,为了获得低输入电压,我们必须降低中间电压轨电源的电压,使其占空比增加,原因是它通过一个固定输入电源供电。因此,这样可能会抵消在POL获得的部分或者全部增益。另一种方法是不使用中间轨,而是直接从输入电源到POL稳压器,目的是降低稳压器数。这时,占空比较低,我们必须小心地选择FET。


图10:总损耗与效率和占空比的关系。


在有多个输出电压和电流要求的电源系统中,情况会更加复杂。对比不同POL稳压器占空比的效率、成本和体积。图11显示了一个系统,其输入电压为28V,共有8个负载,4个不同电压,范围为3.3V到1.25V。共有3种对比方法:1)无中间轨,直接通过输入电源提供28V电压,以实现POL稳压器的低占空比;2)使用12V中间轨,POL稳压器中等占空比;3)使用5V中间轨,高POL稳压器占空比。图12显示了对比结果。这种情况下,无中间轨电源的构架实现了最低成本,12V中间轨电压的构架获得了最高效率,而5V中间轨电压构架则实现了最小体积。因此,我们可以看到,对于这种大型系统而言,单POL电源情况下我们所看到的这些参数均没有明显的趋向。这是因为,使用多个稳压器时,除中间轨稳压器本身以外,每个稳压器都有其不同的负载电流和电压要求,而这些需求可能会相互冲突。研究这种情况的最佳方法是使用如WEBENCH电源设计师等工具,对不同的选项进行评估。


图11:表明输入、中间轨、负载点(POL)电源和负载的电源系统。中间轨电压的不同选择为28V(直接使用输入电源)、12V和5V。这会带来不同的POL稳压器占空比。


图12:电源设计曲线图,其表明中间轨电压对电源系统效率、体积和成本的影响。



载自网络员微信(pqw834322840!

稿//广// 13237418207

亿~

💬 👍 ❤️ 

电子芯期天 致力于分享各种电子电路开发设计资料及经验.
评论 (0)
  • 文/Leon编辑/侯煜‍关税大战一触即发,当地时间4月9日起,美国开始对中国进口商品征收总计104%的关税。对此,中国外交部回应道:中方绝不接受美方极限施压霸道霸凌,将继续采取坚决有力措施,维护自身正当权益。同时,中国对原产于美国的进口商品加征关税税率,由34%提高至84%。随后,美国总统特朗普在社交媒体宣布,对中国关税立刻提高至125%,并暂缓其他75个国家对等关税90天,在此期间适用于10%的税率。特朗普政府挑起关税大战的目的,实际上是寻求制造业回流至美国。据悉,特朗普政府此次宣布对全球18
    华尔街科技眼 2025-04-10 16:39 159浏览
  •   天空卫星健康状况监测维护管理系统:全方位解析  在航天技术迅猛发展的当下,卫星在轨运行的安全与可靠至关重要。整合多种技术,实现对卫星的实时监测、故障诊断、健康评估以及维护决策,有力保障卫星长期稳定运转。  应用案例       系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。  一、系统架构与功能模块  数据采集层  数据处理层  智能分析层  决策支持层  二、关键技术  故障诊断技术  
    华盛恒辉l58ll334744 2025-04-10 15:46 126浏览
  • 由西门子(Siemens)生产的SIMATIC S7 PLC在SCADA 领域发挥着至关重要的作用。在众多行业中,SCADA 应用都需要与这些 PLC 进行通信。那么,有哪些高效可行的解决方案呢?宏集为您提供多种选择。传统方案:通过OPC服务器与西门子 PLC 间接通信SIMATIC S7系列的PLC是工业可编程控制器,能够实现对生产流程的实时SCADA监控,提供关于设备和流程状态的准确、最新数据。S7Comm(全称S7 Communication),也被称为工业以太网或Profinet,是西门
    宏集科技 2025-04-10 13:44 152浏览
  • 技术原理:非扫描式全局像的革新Flash激光雷达是一种纯固态激光雷达技术,其核心原理是通过面阵激光瞬时覆盖探测区域,配合高灵敏度传感器实现全局三维成像。其工作流程可分解为以下关键环节:1. 激光发射:采用二维点阵光源(如VCSEL垂直腔面发射激光器),通过光扩散器在单次脉冲中发射覆盖整个视场的面阵激光,视场角通常可达120°×75°,部分激光雷达产品可以做到120°×90°的超大视场角。不同于传统机械扫描或MEMS微振镜方案,Flash方案无需任何移动部件,直接通过电信号控制激光发射模式。2.
    robolab 2025-04-10 15:30 152浏览
  •   卫星故障预警系统软件:卫星在轨安全的智能护盾   北京华盛恒辉卫星故障预警系统软件,作为确保卫星在轨安全运行的关键利器,集成前沿的监测、诊断及预警技术,对卫星健康状况予以实时评估,提前预判潜在故障。下面将从核心功能、技术特性、应用场景以及发展走向等方面展开详尽阐述。   应用案例   目前,已有多个卫星故障预警系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星故障预警系统。这些成功案例为卫星故障预警系统的推广和应用提供了有力支持。   核心功能   实时状态监测:
    华盛恒辉l58ll334744 2025-04-09 19:49 193浏览
  •   海上电磁干扰训练系统:全方位解析      海上电磁干扰训练系统,作为模拟复杂海上电磁环境、锻炼人员应对电磁干扰能力的关键技术装备,在军事、科研以及民用等诸多领域广泛应用。接下来从系统构成、功能特点、技术原理及应用场景等方面展开详细解析。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   一、系统构成   核心组件   电磁信号模拟设备:负责生成各类复杂的电磁信号,模拟海上多样
    华盛恒辉l58ll334744 2025-04-10 16:45 211浏览
  • 行业痛点:电动车智能化催生语音交互刚需随着全球短途出行市场爆发式增长,中国电动自行车保有量已突破3.5亿辆。新国标实施推动行业向智能化、安全化转型,传统蜂鸣器报警方式因音效单一、缺乏场景适配性等问题,难以满足用户对智能交互体验的需求。WT2003HX系列语音芯片,以高性能处理器架构与灵活开发平台,为两轮电动车提供从基础报警到智能交互的全栈语音解决方案。WT2003HX芯片技术优势深度解读1. 高品质硬件性能,重塑语音交互标准搭载32位RISC处理器,主频高达120MHz,确保复杂算法流畅运行支持
    广州唯创电子 2025-04-10 09:12 215浏览
  • 什么是车用高效能运算(Automotive HPC)?高温条件为何是潜在威胁?作为电动车内的关键核心组件,由于Automotive HPC(CPU)具备高频高效能运算电子组件、高速传输接口以及复杂运算处理、资源分配等诸多特性,再加上各种车辆的复杂应用情境等等条件,不难发见Automotive HPC对整个平台讯号传输实时处理、系统稳定度、耐久度、兼容性与安全性将造成多大的考验。而在各种汽车使用者情境之中,「高温条件」就是你我在日常生活中必然会面临到的一种潜在威胁。不论是长时间将车辆停放在室外的高
    百佳泰测试实验室 2025-04-10 15:09 123浏览
  • 背景近年来,随着国家对资源、能源有效利用率的要求越来越高,对环境保护和水处理的要求也越来越严格,因此有大量的固液分离问题需要解决。真空过滤器是是由负压形成真空过滤的固液分离机械。用过滤介质把容器分为上、下两层,利用负压,悬浮液加入上腔,在压力作用下通过过滤介质进入下腔成为滤液,悬浮液中的固体颗粒吸附在过滤介质表面形成滤饼,滤液穿过过滤介质经中心轴内部排出,达到固液分离的目的。目前市面上的过滤器多分为间歇操作和连续操作两种。间歇操作的真空过滤机可过滤各种浓度的悬浮液,连续操作的真空过滤机适于过滤含
    宏集科技 2025-04-10 13:45 126浏览
  • ‌亥姆霍兹线圈‌是由两组相同的线圈组成,线圈之间的距离等于它们的半径。当电流同时流过这两个线圈时,会在它们中间形成一个几乎均匀的磁场。这种设计克服了普通线圈磁场不均匀的缺陷,能够在中心区域形成稳定、均匀的磁场‌。‌亥姆霍兹线圈的应用领域‌包括材料、电子、生物、医疗、航空航天、化学、应用物理等各个学科。由于其操作简便且能够提供极微弱的磁场直至数百高斯的磁场,亥姆霍兹线圈在各研究所、高等院校及企业中被广泛用于物质磁性或检测实验。‌亥姆霍兹线圈可以根据不同的标准进行分类‌:‌按磁场方向分类‌:‌一维亥
    锦正茂科技 2025-04-09 17:20 176浏览
  • 政策驱动,AVAS成新能源车安全刚需随着全球碳中和目标的推进,新能源汽车产业迎来爆发式增长。据统计,2023年中国新能源汽车渗透率已突破35%,而欧盟法规明确要求2024年后新能效车型必须配备低速提示音系统(AVAS)。在此背景下,低速报警器作为车辆主动安全的核心组件,其技术性能直接关乎行人安全与法规合规性。基于WT2003H芯片开发的AVAS解决方案,以高可靠性、强定制化能力及智能场景适配特性,正成为行业技术升级的新标杆。WT2003H方案技术亮点解析全场景音效精准触发方案通过多传感器融合技术
    广州唯创电子 2025-04-10 08:53 238浏览
  • 行业变局:从机械仪表到智能交互终端的跃迁全球两轮电动车市场正经历从“功能机”向“智能机”的转型浪潮。数据显示,2024年智能电动车仪表盘渗透率已突破42%,而传统LED仪表因交互单一、扩展性差等问题,难以满足以下核心需求:适老化需求:35%中老年用户反映仪表信息辨识困难智能化缺口:78%用户期待仪表盘支持手机互联与语音交互成本敏感度:厂商需在15元以内BOM成本实现功能升级在此背景下,集成语音播报与蓝牙互联的WT2605C-32N芯片方案,以“极简设计+智能交互”重构仪表盘技术生态链。技术破局:
    广州唯创电子 2025-04-11 08:59 180浏览
  •     前几天同事问我,电压到多少伏就不安全了?考虑到这位同事的非电专业背景,我做了最极端的答复——多少伏都不安全,非专业人员别摸带电的东西。    那么,是不是这么绝对呢?我查了一下标准,奇怪的知识增加了。    标准的名字值得玩味——《电流对人和家畜的效应》,GB/T 13870.5 (IEC 60749-5)。里面对人、牛、尸体分类讨论(搞硬件的牛马一时恍惚,不知道自己算哪种)。    触电是电流造成的生理效应
    电子知识打边炉 2025-04-09 22:35 270浏览
  •   卫星故障预警系统:守护卫星在轨安全的 “瞭望塔”   卫星故障预警系统作为保障卫星在轨安全运行的核心技术,集成多源数据监测、智能诊断算法与预警响应机制,实时监控卫星关键系统状态,精准预判故障。下面从系统架构、技术原理、应用场景以及发展趋势这四个关键维度展开深入解析。   应用案例   目前,已有多个卫星故障预警系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星故障预警系统。这些成功案例为卫星故障预警系统的推广和应用提供了有力支持。   系统架构与组成   卫星故障
    华盛恒辉l58ll334744 2025-04-09 17:18 146浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦