【科研动态】中国科大在高性能金刚石量子器件制备上取得重要进展

DT半导体材料 2022-10-08 19:45


中国科学技术大学中科院微观磁共振重点实验室杜江峰、王亚等人在金刚石量子器件制备方向取得重要进展发展了一种全新的基于自对准的光子学器件制备加工技术,可将氮-空位色心这一原子级量子传感器以纳米级精度加工到金刚石器件最佳工作位置,实现接近最优光学探测性能的量子传感器阵列。这项研究成果以“Self-aligned patterning technique for fabricating high-performance diamond sensor arrays with nanoscale precision”为题发表在《科学进展》[Sci. Adv.8, eabn9573 (2022)]上。

 研究背景 

金刚石,俗称“钻石”,具有高硬度、高稳定性、高透光性、高热导率以及超高的禁带宽度等优异的物理化学性质,在超精密加工、光学材料以及半导体电子器件等工业领域有着广泛的应用。近十多年来,科学家发现金刚石中一种可以发光的原子尺度晶格缺陷--氮-空位色心(简称NV色心)具有极大的量子应用前景,让存在缺陷的不“完美”金刚石变得在实用性上更加“完美”。NV色心不仅可以以纳米空间分辨率对电磁场、压力等多种物理量在室温大气乃至极端环境下进行精密测量,也可以建立多体量子纠缠,用于研究量子信息等基础问题,在前沿基础科学、高科技产业等领域有重大应用价值。

图1:制备技术方法示意图


制备高性能金刚石量子器件是金刚石量子信息技术实用化的关键技术。以金刚石量子传感器为例,其原理是利用器件内的NV色心将外界的微弱物理信号转换为自身荧光强度信号来进行探测,因此在不牺牲其他物理性质前提下,提高NV色心光子计数率是提升传感器性能的一个关键指标。在过去几年中,人们积极致力于开发用于提高NV色心荧光强度的金刚石微纳米光子学结构,例如固体浸没透镜、柱形波导、圆形牛眼光栅、抛物面反射器、倒置纳米锥等。但目前传统的制备技术无法精确控制微纳米结构中NV色心位置,导致器件制备效率低下,性能难以达到预期(图2(a)),其主要原因是NV色心制备工艺和金刚石结构刻蚀工艺之间的对准难题(图1左)。通常这一对准精度需要优于20纳米,方能达到光学器件理论上最优的光学性能。

图2:器件制造效果展示。(a)传统工艺制造器件光学计数率分布;(b)自对准工艺制造器件光学计数率分布;(c)金刚石纳米柱传感阵列电镜照片;(d)单个NV色心荧光饱和曲线测试。


 研究内容 


针对以上难题,本工作研究团队发展了一种基于自对准策略的光子学器件加工技术,通过双层掩膜图形化工艺设计实现生成NV色心所需的氮离子注入工艺和金刚石结构刻蚀工艺的自对准,精度可以达到15纳米(图1右)。使用该技术,研究团队实现了高性能金刚石纳米柱传感阵列的制造,该纳米柱传感器可用于生物传感、纳米级磁性材料成像等前沿应用。与传统制造技术相比,器件显示出高度一致且最优的光子计数率以及接近理论预期的器件产率。通过金刚石晶体取向进一步控制荧光发射偶极方向,团队最终实现单个NV色心饱和光子计数率达到~4.34Mcps,荧光强度提升大约20倍(图2)。


该方法具有可工程化、简单且高精度的特点,不仅可批量化制备高性能金刚石量子传感器,对金刚石量子技术实用化具有重要意义,还可以应用于碳化硅、稀土离子等其他固态量子体系。相关技术与器件已申请国际专利进行保护。


中科院微观磁共振重点实验室特任副研究员王孟祺为该论文的第一作者,杜江峰院士、王亚教授为共同通讯作者。该研究得到了科技部、中科院、国家自然科学基金委和安徽省的资助。


论文链接:

https://www.science.org/doi/10.1126/sciadv.abn9573


免责声明 | 部分素材源自网络,版权归原作者所有。如涉侵权,请联系我们处理



2022年11月15-17日,由DT新材料主办第六届国际碳材料大会暨产业展览会,针对半导体产业链设置了碳化硅半导体论坛金刚石前沿论坛极端制造与超精密加工论坛围绕半导体晶体材料制备、晶圆衬底加工、外延、封装热管理等技术以及高功率器件、量子技术等前沿话题展开话题讨论,探索第三代半导体应用的无限可能,加速推进芯片国产化!

碳化硅半导体论坛

金刚石前沿论坛
极端制造与超精密加工论坛
 部分展商风采 







DT半导体材料 聚焦于半导体材料行业的最新动态
评论
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 201浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 105浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 187浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 76浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 530浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 82浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 125浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 68浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 131浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 488浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 202浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 340浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 162浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 167浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦