浸润式光刻之父林本坚详解IC缩小术!(超详细!建议收藏)

半导体工艺与设备 2022-10-07 16:46

自光学微影技术出现,集成电路(Integrated circuit,IC)体积跟随着摩尔定律不断缩小,到踏入3纳米量产的今日,IC 可说足足缩小了百万倍!这成果并非一蹴可几,而是多年来半导体研发人员和工程师的心血累积。在不久前的台湾地区中研究院111年知识飨宴科普讲座上,被誉为浸润式光刻之父的林本坚林本坚院士以「光学微影缩IC 百万倍」为题,分享光学微影一路走来,如何将半导体元件尺寸越缩越小、推向极限。

▲ 林本坚院士分享半导体微影技术的发展历程。

随着集成电路(IC)与半导体制程进展,智能手机、平板等3C 产品,体积越来越小,速度却越来越快,功能也越来越多、越强大。这归根到底,是因现在半导体技术把IC 越做越小,3C 产品可放入的元件数量越来越多,自然能做的事就更多,效率也增加了。

IC 越做越小的关键技术在于光学微影(Optical Lithography)。光学微影简单来说,就是制作元件时,将元件组成材料依所需位置「印」在半导体晶圆上的技术。能印出越精细的图案,就能制作越小的元件。

如果读者好奇手机或电脑IC 芯片是怎么做出来的,可参考蔡司公司视频,解释芯片从原料到封装的整个过程,曝光(exposure)步骤,就是此文要介绍的主题。

衡量元件尺寸的关键指标之一为「晶体管闸极长度」(Gate length),这数字与IC 速度直接相关。以场效晶体管来说,闸极长度越小,电流就可花更少时间通过晶体管漏极和源极。

如果要表示元件微缩程度,另一个关键指标为线宽和周距(Pitch),通常以金属层线与线的周距为参考基准,周距越小,线宽也越小,元件微缩程度越高。


▲ 线宽与周距示意图,周距为线宽加上线与线的间距,可表示金属线周期性排列的尺度大小。

如今到了单位数纳米世代(如7纳米或5纳米制程),这些数字逐渐演变为世代标志。虽然IC 还是越小越好,但新世代制程可能代表运算快、密度高、价钱便宜等其他综合优点。

那IC 目前到底缩小多少?先有个概念,如果把每个世代视为实际尺寸,自从1980 年代有光学微影技术以来,线宽从一开始5,000纳米降到现在5纳米,甚至往3纳米迈进。线宽不断缩小,每代约缩小上一代0.7 倍,到5纳米是第21 代。经过「代代相传」,线宽缩小1,000 倍,换算下来,同面积能放入的元件数量高达原本100 万倍!

光学微影技术如魔法把线宽一步步缩小,靠的是多年来研发人员一步步努力。林本坚院士在「光学微影缩IC 百万倍」科普讲座,细数关键改良点及挑战。

IC 如何缩小?追求最小线宽

先从核心光学解析度公式开始:

半周距(Half Pitch)= k1λ/sinθ

  • 半周距:一条线宽加上线与线间距后乘以0.5。曝光解析度高时,半周距可做得越小,代表线宽越小。

  • k1:系数,与制程有关,缩小半周距的关键,是所有半导体工程师致力缩小的目标。

  • λ:微影制程的光源波长,从一开始436纳米降到13.5纳米。

  • sinθ:与镜头聚光至成像面的角度有关,基本上由镜头决定。


▲ 光线通过透镜系统聚焦成像示意图,n 为介质折射率,θ 为镜头聚焦至成像面的角度。(Source:111 年中央研究院知识飨宴)

由于光在不同介质波长会改变,因此考虑如何增加解析度时,可将镜头与成像面(晶圆)的介质(折射率n)一并纳入考虑,将λ 改以λ0/n 表示,λ0 是真空波长。

半周距(Half Pitch)= k1λ0/n sinθ

故增加曝光解析度(半周距↓)的努力方向为:增加sinθ、降低λ0、降低k1、增加n。

另一方面,为了让微影制程有够大曝光清晰范围,镜头成像景深(DOF)数字越大越好(注),但景深变大的副作用是半周距也会跟着变大,因此制程改良必须考虑两者平衡或相互牺牲。

增加sinθ:巨大复杂的镜头

sinθ 与镜头聚光角度有关,数值由镜头决定,sinθ 越大,解析度越高。光学微影镜头不如平常相机或望远镜那样简单,而是由非常多大大小小、不同厚薄及曲率的透镜,经精确计算后仔细堆叠组成(下图)。

这种镜头极其精密,林本坚透露:「6,000 万美元镜头已不稀奇,1 亿美元都有可能。」镜头做得复杂、巨大又昂贵,是为了尽可能将sinθ 逼近极值,也就是1。「目前镜头可将sinθ 值做到0.93,已非常辛苦了。」


▲ 光刻机的镜头设计相当复杂,林本坚提到目前业界尽可能提升sinθ 值到0.93。图中NA = n.sinθ = 0.9,空气折射率n 约为1,故此镜头sinθ 为0.9。镜头模组实际使用时会立起来垂直地面(如下图)。(Source:111 年中央研究院知识飨宴)


▲ 林本坚强调光刻机镜头模组非常巨大,重到必须出动起重机才能搬运。(Source:111 年中央研究院知识飨宴)

缩短波长:材料与镜头的精准搭配

第二个方法是缩短波长。虽说改变光源就能得到不同波长,但不同波长光经过透镜后折射方向不同,镜头材料也必须改变。林本坚表示,当波长越缩越短,「我们能选择的镜头材料也越来越少,最后就只有那两三种可以用。」

用少数几种材枓调适光源的频宽越来越难。后来大家转而选择单一种合适的材料,并针对适合这种材料的波长,将频宽尽量缩窄。林本坚说:「连激光的频宽都不够窄小,现在频宽缩窄到难以想像的程度。」

另一种解决问题的方法,是在镜头组成加入反射镜,称为反射折射式光学系统(Catadioptric system)。因不管什么波长的光,遇到镜面的入射角和反射角都相等,若能以一些反射镜面取代透镜,就能增加对光波频宽的容忍度。


▲ 波长193纳米光源的曝光镜头模组,可看到透镜组合加入反射镜。(Source:Proceedings of the IEEE)

后来到了13.5纳米(极紫外光,EUV)波长时,甚至必须整组镜头都使用反光镜,称为全反射式光学系统(All reflective system),可参考下方ASML 的展示影片。林本坚表示,全反射镜系统必须设计得让光束相互避开,使镜片不挡住光线。此外,相较透镜穿透角度,镜面反射角度的误差容忍度更低,镜面角度必须非常非常精准。以上这些都增加设计困难度。

曝光波长改变还会牵涉到曝光光阻,光阻材料从化学性质、透光度到感光度等各项特性,都必须随曝光波长改变调整,「这是浩大的工程,且感光速度非常重要,是节省制造成本的关键。」林本坚说。

值得一提的是,光阻材料的感光速度在微缩IC 历史上相当重要。1980 年代,时任IBM 的CG Willson 和H. Iro 率先提出以化学方式放大光阻感光速度的方法,将感光速度提升10~100 倍,大幅增加曝光效率。这项重大发明,让CG Willson 在2013 年荣获「日本国际奖」(Japan Prize),可惜当时H. Iro博士已过世,无法一同受奖。

降低k1:解析度增益技术(RET)

提高解析度的重头戏就在如何降低k1。林本坚说:「你可以不买昂贵的镜头,也可以不选用需要很多研发工夫的新波长。只要你能用聪明才智与创造力,将k1 降下来。」

首先是「防震动」,就好像拍照开防手震功能,晶圆曝光时设法减少晶圆和光罩相对震动,使曝光图形更精准,恢复因震动损失的解析度。再来是「减少无用反射」,曝光时有很多表面会产生不需要的反射,要设法消除。林本坚表示,改良上述两项,k1 就能达到0.65 水准。

提高解析度还能用双光束成像(2-beam Imaging)法,分别有「偏轴式曝光」(Off-Axis Illumination,OAI)及「移相光罩」(Phase Shift Mask,PSM)两种。

偏轴式曝光是调整光源入射角度,让光线斜射进入光罩,原本应通过光罩绕射的三束光(1 阶、0 阶与-1 阶),会去掉外侧一束光(1 阶或-1 阶),只留下两束光(如0 阶和1 阶)。透过角度调整,很巧妙让两道光相互干涉成像,使解析度增加并增加景深。

移相光罩则在光罩动手脚,让穿过相邻透光区的光有180 度相位差。相位差180 度的光波强度不会改变,只是振幅方向相反。如此一来,相邻透光区的光两两干涉之后,刚好会在遮蔽区相消(该暗的地方更暗),增加透光区与遮蔽区的对比,进而提高解析度。

「这两种做法都可让k1 减少一半。」林本坚笑说:「可惜这两种方法都是用2-beam Imaging 概念,不能叠加使用。」

目前业界多半采偏轴式曝光,林本坚表示:「移相光罩一方面比较贵,另一方面不能任意设计图案,必须考虑邻近相位不抵消的问题。」利用各种降低k1 的技术,已将k1 降到0.28,「这几乎是这些技术能达到的k1 极限了。」

要进一步降低k1 ,还有办法!就是用两个以上光罩,称为「多图案微影」。简单说,将密集图案分工给两个以上图案较宽松的光罩,轮流曝光至晶圆,可避免透光区过于接近,使图案模糊的问题。缺点则是曝光次数加倍,等于效率降低一半。

增加n:浸润式微影技术

增加微影解析度之路,最后可动手脚的就是镜头与晶圆的介质。林本坚提出的浸润式微影技术,将镜头与晶圆的介质从折射率n~1 的空气,改成n= 1.44 的水(对应波长为193纳米光),形同将波长等效缩小为134纳米。

浸润式微影技术让半导体制程12 年内往前走了6 代:从45纳米直到7纳米。林本坚补充,这技术优势在「可继续使用同样波长和光罩,只要把水放到镜头底部和晶圆中间就好。」


▲ 干式微影光学系统与浸润式微影光学系统的差异。(Source:111 年中央研究院知识飨宴)

不过林本坚话锋一转。「我说得很轻松,把水放进去就好,但背后有很多技术。」如水中空气可能让水产生气泡,必须完全移除。另水必须很均匀,透光区照到光的水,会比遮蔽区的水热一点,温差会让水不均匀,影响成像。为了避免温差,必须让水快速流动混合,但又可能产生漩涡。

这很考验机台放水的装置,如何让水流快速均匀又不起漩涡?这是个大学问,至今放水装置起码重新设计了6~8 次。

水的另一个特点,就是「很好的清洗剂」。使用浸润式微影技术时,水很容易把镜头等所有接触物品上的杂质都洗掉,「结果就是晶圆有上千个缺陷(defects)。我们花了很多工夫把缺陷数从几千个降到几百个、几十个,最后降到零。」林本坚说:「那需要投入很多人力和晶圆才能做到。」

半导体人才得是专才、通才,也是活才

演讲最后,身为台湾地区清华大学半导体研究学院院长的林本坚提及人才培养。半导体技术演进到非常复杂,没有一个学生能精通所有技术层面。林本坚说:「所以你会发现,半导体需要团队合作。」

踏入这块领域的学生,林本坚期许除了要有基本的理工能力,还需要有好奇心,会发现新问题,也会找到有趣的新技术(活才)。「如果不能自己发现新技术,会永远跟在别人后面」。

林本坚强调,这不是简单的事,因「真的有学不完的东西」。半导体可分成材料、制程、设计、元件四领域,「希望学生至少精通一个领域,有本领深入钻研(专才)。但对其他领域,也得有某种程度的认识(通才),才能彼此合作,解决问题。」

半导体工艺与设备 1、半导体工艺研究、梳理和探讨。 2、半导体设备应用、研发和进展。 3、建华高科半导体设备推广,包括:曝光机、探针台、匀胶机和切片机。 4、四十五所半导体设备推广,包括:湿化学设备、先进封装设备、电子元器件生产设备等。
评论 (0)
  •   电磁数据展示系统平台解析   北京华盛恒辉电磁数据展示系统平台是实现电磁数据高效展示、分析与管理的综合性软件体系,以下从核心功能、技术特性、应用场景及发展趋势展开解读:   应用案例   目前,已有多个电磁数据展示系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁数据展示系统。这些成功案例为电磁数据展示系统的推广和应用提供了有力支持。   一、核心功能模块   数据采集与预处理   智能分析处理   集成频谱分析、时频变换等信号处理算法,自动提取时域频域特征;
    华盛恒辉l58ll334744 2025-05-13 10:20 342浏览
  •   基于 2025 年行业权威性与时效性,以下梳理国内知名软件定制开发企业,涵盖综合型、垂直领域及特色技术服务商:   华盛恒辉科技有限公司:是一家专注于高端软件定制开发服务和高端建设的服务机构,致力于为企业提供全面、系统的开发制作方案。在部队政企开发、建设到运营推广领域拥有丰富经验,在教育,工业,医疗,APP,管理,商城,人工智能,部队软件、工业软件、数字化转型、新能源软件、光伏软件、汽车软件,ERP,系统二次开发,CRM等领域有很多成功案例。   五木恒润科技有限公司:是一家专业的部队信
    华盛恒辉l58ll334744 2025-05-12 16:13 243浏览
  • 文/Leon编辑/cc孙聪颖‍2025年1月至今,AI领域最出圈的除了DeepSeek,就是号称首个“通用AI Agent”(智能体)的Manus了,其邀请码一度被炒到8万元。很快,通用Agent就成为互联网大厂、AI独角兽们的新方向,迅速地“卷”了起来。国外市场,Open AI、Claude、微软等迅速推出Agent产品或构建平台,国内企业也在4月迅速跟进。4月,字节跳动、阿里巴巴、百度纷纷入局通用Agent市场,主打复杂的多任务、工作流功能,并对个人用户免费。腾讯则迅速更新腾讯元器的API接
    华尔街科技眼 2025-05-12 22:29 137浏览
  • ‌磁光克尔效应(Magneto-Optic Kerr Effect, MOKE)‌ 是指当线偏振光入射到磁性材料表面并反射后,其偏振状态(偏振面旋转角度和椭偏率)因材料的磁化强度或方向发生改变的现象。具体表现为:1、‌偏振面旋转‌:反射光的偏振方向相对于入射光发生偏转(克尔旋转角 θK)。2、‌椭偏率变化‌:反射光由线偏振变为椭圆偏振(克尔椭偏率 εK)。这一效应直接关联材料的磁化状态,是表征磁性材料(如铁磁体、反铁磁体)磁学性质的重要非接触式光学探测手段,广泛用于
    锦正茂科技 2025-05-12 11:02 293浏览
  • 在全球供应链紧张和国产替代需求推动下,国产存储芯片产业快速发展,形成设计到封测一体化的完整生态。北京君正、兆易创新、紫光国芯、东芯股份、普冉股份和佰维存储等六大上市公司在NOR/NAND Flash、DRAM、嵌入式存储等领域布局各具特色,推动国产替代提速。贞光科技代理的品牌紫光国芯,专注DRAM技术,覆盖嵌入式存储与模组解决方案,为多领域客户提供高可靠性产品。随着AI、5G等新兴应用兴起,国产存储厂商有望迎来新一轮增长。存储芯片分类与应用易失性与非易失性存储芯片易失性存储芯片(Volatile
    贞光科技 2025-05-12 16:05 187浏览
  • 在当下竞争激烈的 AI 赛道,企业高层的变动往往牵一发而动全身,零一万物近来就深陷这样的动荡漩涡。近日,零一万物联合创始人、技术副总裁戴宗宏离职创业的消息不胫而走。这位在大模型基础设施领域造诣颇深的专家,此前在华为云、阿里达摩院积累了深厚经验,在零一万物时更是带领团队短期内完成了千卡 GPU 集群等关键设施搭建,其离去无疑是重大损失。而这并非个例,自 2024 年下半年以来,李先刚、黄文灏、潘欣、曹大鹏等一众联创和早期核心成员纷纷出走。
    用户1742991715177 2025-05-13 21:24 68浏览
  •   舰艇电磁兼容分析与整改系统平台解析   北京华盛恒辉舰艇电磁兼容分析与整改系统平台是保障海军装备作战效能的关键技术,旨在确保舰艇电子设备在复杂电磁环境中协同运行。本文从架构、技术、流程、价值及趋势五个维度展开解析。   应用案例   目前,已有多个舰艇电磁兼容分析与整改系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润舰艇电磁兼容分析与整改系统。这些成功案例为舰艇电磁兼容分析与整改系统的推广和应用提供了有力支持。   一、系统架构:模块化智能体系   电磁环境建模:基
    华盛恒辉l58ll334744 2025-05-14 11:22 37浏览
  • 感谢面包板论坛组织的本次测评活动,本次测评的对象是STM32WL Nucleo-64板 (NUCLEO-WL55JC) ,该测试板专为LoRa™应用原型构建,基于STM32WL系列sub-GHz无线微控制器。其性能、功耗及特性组合经过精心挑选,支持通过Arduino® Uno V3连接,并利用ST morpho接头扩展STM32WL Nucleo功能,便于访问多种专用屏蔽。STM32WL Nucleo-64板集成STLINK-V3E调试器与编程器,无需额外探测器。该板配备全面的STM
    无言的朝圣 2025-05-13 09:47 139浏览
  • 在 AI 浪潮席卷下,厨电行业正经历着深刻变革。AWE 2025期间,万得厨对外首次发布了wan AiOS 1.0组织体超智能系统——通过AI技术能够帮助全球家庭实现从健康检测、膳食推荐,到食材即时配送,再到一步烹饪、营养总结的个性化健康膳食管理。这一创新之举并非偶然的个案,而是整个厨电行业大步迈向智能化、数字化转型浪潮的一个关键注脚,折射出全行业对 AI 赋能的热切渴求。前有标兵后有追兵,万得厨面临着高昂的研发成本与技术迭代压力,稍有懈怠便可能被后来者赶
    用户1742991715177 2025-05-11 22:44 177浏览
  •   电磁数据管理系统深度解析   北京华盛恒辉电磁数据管理系统作为专业的数据处理平台,旨在提升电磁数据的处理效率、安全性与可靠性。以下从功能架构、核心特性、应用场景及技术实现展开分析:   应用案例   目前,已有多个电磁数据管理系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁数据管理系统。这些成功案例为电磁数据管理系统的推广和应用提供了有力支持。   一、核心功能模块   数据采集与接入:实时接收天线、频谱仪等设备数据,兼容多协议接口,确保数据采集的全面性与实时性
    华盛恒辉l58ll334744 2025-05-13 10:59 253浏览
  •   定制软件开发公司推荐清单   在企业数字化转型加速的2025年,定制软件开发需求愈发多元复杂。不同行业、技术偏好与服务模式的企业,对开发公司的要求大相径庭。以下从技术赛道、服务模式及行业场景出发,为您提供适配的定制软件开发公司推荐及选择建议。   华盛恒辉科技有限公司:是一家专注于高端软件定制开发服务和高端建设的服务机构,致力于为企业提供全面、系统的开发制作方案。在部队政企开发、建设到运营推广领域拥有丰富经验,在教育,工业,医疗,APP,管理,商城,人工智能,部队软件、工业软件、数字化转
    华盛恒辉l58ll334744 2025-05-12 15:55 316浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦