“一石二鸟”策略原位构筑多孔FeF3@C复合无锂正极材料用于高性能锂离子电池

锂电联盟会长 2022-10-06 10:19

点击左上角“锂电联盟会长”,即可关注!

随着储能技术的快速发展,传统插层型过渡金属化合物(如LiCoO2、LiMnO2、LiNixMnyCozO2和LiFePO4)作为正极材料所提供的理论比容量逐渐不能满足快速增长的高能量密度锂离子电池市场的需求。相比这些传统正极材料,转换型正极材料,如过渡金属卤化物、硫化物和氧化物、表现出高的工作电压和高比容量,是一种潜在的锂离子正极材料。其中金属氟化物(如FeF3, FeF2, NiF2等)由于其高容量和低成本,在正极应用中具有广阔的前景。FeF3具有高的理论容量237 mAh g-1(单电子反应)和712 mAh g-1 (三电子反应),被认为是最有前途的转化型无锂正极材料之一。但是FeF3正极材料存在导电性差、反应动力学迟缓和体积膨胀等问题,导致电压迟滞高,倍率性能以及循环稳定性差。所以,构建出何种结构的导电基底能够提升金属氟化物的电导率、抑制在充放电过程中产生的体积膨胀,并且在合成中使用何种氟源能够简便安全地完成氟化,都是研究人员很关心的问题。

【工作介绍】
鉴于此,江汉大学梁济元与美国橡树岭国家实验室Xiao-Guang Sun等人通过使用聚四氟乙烯(PTFE)一步完成硬模板(SiO2)蚀刻和过渡金属氟化,同时实现了多孔碳基底的构建和金属氟化物的生成,这种复合材料可以用于实现高倍率性能和长循环稳定性的锂离子电池。多孔碳基底具备三维海绵状结构,丰富的孔隙不仅加快了电子转移和提升了锂离子扩散动力学,而且还缓冲了锂化/去锂化过程中严重的体积膨胀,且能够诱导生成均匀、薄和稳定的富含Li2CO3/LiF的正极-电解质相界面(CEI)。以FeF3为例,电化学性能展示出制备的多孔FeF3@C复合材料(p-FeF3@C)在0.1 C下具有230 mAh g-1的高比容量,在1C下循环200圈后容量保持率还有92.5%。此外,与预锂化石墨负极相结合的全电池优异的电化学性能证明了该策略的实用性。因此,提出的新合成策略将启发未来高性能的多孔结构金属氟碳储能复合材料的设计。该工作以“In-Situ Synthesis of Porous Metal Fluoride@Carbon Composite Via Simultaneous Etching/Fluorination Enabled Superior Li Storage Performance”为题发表在国际知名期刊Nano Energy上。

【内容表述】
首先,前驱体(SiO2、葡萄糖、硝酸铁)通过机械球磨均匀混合;其次,混合物在800℃氩气(Ar)气氛中热处理2小时,生成了铁碳化合物并且完成了葡萄糖的碳化。同时,SiO2模板剂均匀嵌入碳基体中;最后,将复合材料中间体与PTFE进行混合,在Ar氛围下升温至600℃时PTFE分解成CF4,其可以原位蚀刻SiO2和并生成氟化铁,从而得到p-FeF3@C复合材料。该方法避免传统液相氟化及刻蚀造成的污水处理问题。因此,在这一过程中,PTFE既是刻蚀剂也是氟化剂,故其双重作用可以看作是一种“一石两鸟”的策略。
p-FeF3@C纳米复合材料制备示意图

通过XRD和XPS表征了FeF3的成功生成,此外,通过SEM和TEM从微观角度观察到丰富且的多孔结构。通过BET测定了复合材料的孔隙度,并证明了SiO2的引入成功构造了p-FeF3@C中较多的介孔结构。p-FeF3@C中碳基质的引入和丰富的纳米孔隙非常有利于导电性和Li+扩散速率的提高,并缓解了FeF3在重复的锂化/脱锂过程中的体积变化。
图1. p-FeF3@C纳米复合材料的物性表征

为了进一步证明p-FeF3@C的优异的电化学性能,使用商业FeF3作为对照组在充放电电压范围(2.0-4.5 V)的区间内对其进行了研究。p-FeF3@C在不同电流大小条件下表现出比商业FeF3更好的倍率性能。在5C条件下获得了189.2 mAh g-1的可逆循环容量。长循环性能也十分优异,p-FeF3@C正极在第100圈和200圈分别表现出了95%和92.5%的容量保持率,库伦效率接近100%。
图2. p-FeF3@C电极的电化学表征

为进一步探究p-FeF3@C电极的电化学动力学和Li+存储机制,通过不同扫速的CV测试,证明了p-FeF3@C有更大的电容贡献。这是由于多孔结构增大了活性物质的表面积,有利于锂离子的快速传输,有助于增强其倍率性能。奈奎斯特图可以看出p-FeF3@C正极的RCEI和Rct的总和明显低于商业FeF3正极,说明复合材料降低了界面电阻,而且增加了其表面的活性位点数量,反应动力学大大加快。GITT的测试结果更直观地说明了p-FeF3@C正极具有比商业FeF3正极更加快速的Li+扩散速率,电化学反应动力学更快。此外,通过SEM截面分析发现多孔结构的3D框架可以有效缓解循环过程中的体积膨胀。
图3. p-FeF3@C正极的锂离子储存机理及电化学动力学研究

DFT结果表明p-FeF3@C复合材料的带隙减小,导致导带向费米能级偏移。通过理论计算还发现了F掺杂的碳对复合材料的导电性具有一定的贡献作用。因此,可以得出结论,p-FeF3@C可以大大改善金属氟化物电子电导率低的缺点并且有效地促进Li+的传输。
图4. 所得样品电导率的计算研究

通过对循环后的电极进行不同刻蚀深度的XPS分析,结果表明p-FeF3@C正极和商业FeF3正极都具有内层为无机层,外层为有机层的CEI结构。其中p-FeF3@C正极的CEI有机层厚度比商业FeF3正极更薄,而占无机层主要成分的Li2CO3和LiF的含量更高,这有助于控制Li+的均匀传输,防止了电解液的持续分解,构筑更加均匀且致密的CEI膜。
图5. 0.1C循环100圈的p-FeF3@C和商业FeF3电极CEI的XPS溅射分析

为进一步证实上述观点,对CEI主要成分的含量进行了详细的统计分析,结果和上述分析相吻合。并通过TEM观察到p-FeF3@C正极的CEI厚度比商业FeF3正极更薄更均匀。并通过CEI截面的示意图对p-FeF3@C正极和商业FeF3正极的CEI成分及含量进行了分析。证明了p-FeF3@C正极具有均匀、致密且薄的CEI膜,从而实现了较长的循环稳定性。而商业FeF3正极上的CEI很容易破裂,因为它无法承受在充放电过程中由于体积变化而产生的机械应力。因此,破裂的CEI会引发电解液的持续分解,产生更多的副产物,导致循环性能较差。
图6. (a-d) p-FeF3@C和(e-h)商业FeF3电极的CEI组成含量分析,循环后的(i) p-FeF3@C电极和(j)商业FeF3电极的TEM图像,(k) p-FeF3@C电极和(l)商业FeF3电极上形成的CEI结构示意图。

为了进一步评估p-FeF3@C电极在实际应用中的可行性,通过全电池测试探索了其电化学性能。锂化石墨(PLG)||p-FeF3@C全电池在液态电解质中显示出良好的倍率性能和循环稳定性,并且在固态电池中经过150次循环后显示出94.7%的高容量保持率和97.8%的平均库仑效率。
图7. PLG||p-FeF3@C全电池的电化学性能研究

【总结】
在这项工作中,通过一步氟化并刻蚀的方法,开发了具有丰富孔隙结构的p-FeF3@C复合无锂正极材料,用于高比能量和长循环寿命的锂离子电池正极。通过基本的物理化学性质的表征手段证明了多孔结构和活性物质的生成,组装的锂半电池展现出了十分优异的电化学性能,得益于其具有良好导电性的多孔C结构,p-FeF3@C复合正极材料可提供208.6 mAh g-1的高可逆比容量并且在1 C条件下循环200圈后具有较好的容量保持率(92.5%)。通过容量分析和GITT测试证明了该复合材料具有优异的电容贡献和Li+扩散速率,这些都归因于多孔结构较大的接触面积和丰富的Li+传输通道。DFT结果表明p-FeF3@C复合材料的带隙更小。通过对循环后的电极进行分析,发现p-FeF3@C复合电极表面生成了富含Li2CO3和LiF的均匀且致密的CEI膜,可以为电极表面提供连续的界面保护。为了进一步证明多孔正极材料的实用性,p-FeF3@C与锂化石墨(PLG)组合的全电池中展示出了优异的电化学的性能。此外,所提出的合成策略具有广泛的普适性。因此,这项工作成功地揭示了原位蚀刻/氟化策略合成纳米多孔TMFs@C复合材料的巨大潜力。

Kang Du, Runming Tao, Chi Guo, Haifeng Li, Xiaolang Liua, Pingmei Guo, Deyu Wang, Jiyuan Liang, Jianlin Li, Sheng Dai, Xiao-Guang Sun. In-situ synthesis of porous metal fluoride@carbon composite via simultaneous etching/fluorination enabled superior Li storage performance. Nano Energy, 2022.
https://doi.org/10.1016/j.nanoen.2022.107862
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法!
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)
锂电联盟会长 研发材料,应用科技
评论
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 648浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 397浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 230浏览
  • 项目展示①正面、反面②左侧、右侧项目源码:https://mbb.eet-china.com/download/316656.html前言为什么想到要做这个小玩意呢,作为一个死宅,懒得看手机,但又想要抬头就能看见时间和天气信息,于是就做个这么个小东西,放在示波器上面正好(示波器外壳有个小槽,刚好可以卡住)功能主要有,获取国家气象局的天气信息,还有实时的温湿度,主控采用ESP32,所以后续还可以开放更多奇奇怪怪的功能,比如油价信息、股票信息之类的,反正能联网可操作性就大多了原理图、PCB、面板设计
    小恶魔owo 2025-01-25 22:09 375浏览
  • 不让汽车专美于前,近年来哈雷(Harley-Davidson)和本田(Honda)等大型重型机车大厂的旗下车款皆已陆续配备车载娱乐系统与语音助理,在路上也有越来越多的普通机车车主开始使用安全帽麦克风,在骑车时透过蓝牙连线执行语音搜寻地点导航、音乐播放控制或免持拨打接听电话等各种「机车语音助理」功能。客户背景与面临的挑战以本次分享的客户个案为例,该客户是一个跨国车用语音软件供货商,过往是与车厂合作开发前装车机为主,且有着多年的「汽车语音助理」产品经验。由于客户这次是首度跨足「机车语音助理」产品,因
    百佳泰测试实验室 2025-01-24 17:00 157浏览
  • 随着AI大模型训练和推理对计算能力的需求呈指数级增长,AI数据中心的网络带宽需求大幅提升,推动了高速光模块的发展。光模块作为数据中心和高性能计算系统中的关键器件,主要用于提供高速和大容量的数据传输服务。 光模块提升带宽的方法有两种:1)提高每个通道的比特速率,如直接提升波特率,或者保持波特率不变,使用复杂的调制解调方式(如PAM4);2)增加通道数,如提升并行光纤数量,或采用波分复用(CWDM、LWDM)。按照传输模式,光模块可分为并行和波分两种类型,其中并行方案主要应用在中短距传输场景中成本
    hycsystembella 2025-01-25 17:24 278浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 1145浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 255浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 181浏览
  • 书接上回:【2022年终总结】阳光总在风雨后,启航2023-面包板社区  https://mbb.eet-china.com/blog/468701-438244.html 总结2019,松山湖有个欧洲小镇-面包板社区  https://mbb.eet-china.com/blog/468701-413397.html        2025年该是总结下2024年的喜怒哀乐,有个好的开始,才能更好的面对2025年即将
    liweicheng 2025-01-24 23:18 252浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 913浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 339浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 220浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 230浏览
  • 前篇文章中『服务器散热效能不佳有解吗?』提到气冷式的服务器其散热效能对于系统稳定度是非常重要的关键因素,同时也说明了百佳泰对于散热效能能提供的协助与服务。本篇将为您延伸说明我们如何进行评估,同时也会举例在测试过程中发现的问题及改善后的数据。AI服务器的散热架构三大重点:GPU导风罩:尝试不同的GPU导风罩架构,用以集中服务器进风量,加强对GPU的降温效果。GPU托盘:改动GPU托盘架构,验证出风面积大小对GPU散热的影想程度。CPU导风罩:尝试封闭CPU导风罩间隙,集中风流,验证CPU降温效果。
    百佳泰测试实验室 2025-01-24 16:58 133浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦