使用AURIX TOM​模块生成交流电机的PWM驱动

嵌入式ARM 2020-05-10 00:00




01



使用AURIX TOM模块生成交流电机的PWM驱动




1简介

2 GTM and PWM 的生成

    2.1 用于PWM生成TOM模块介绍

    2.2居中对齐和边沿对齐PWM

3 PWMAC驱动器功能概述

    3.1 PWMAC通道和顺序

    3.2 ADC的PWMAC触发

4带GTM的PWMAC驱动器

    4.1 ADC触发

5实施示例–PWMAC

    5.1简介

    5.2 PWMAC驱动程序

    5.3 PWMAC驱动程序API

    5.4驱动程序配置

 

1. 简介

通过使用英飞凌AURIX™系列产品中引入的通用计时器模块(GTM),可用于交流电动机控制的PWM信号的生成。

》交流电机的驱动

如下图所示:只需要在ABC三相提供120相位差的正弦电压,电机就会稳定的转动起来,调节正弦电压的幅值和频率,就能调节电机的转速和扭矩。这是我们所需要的输出。


》三相桥臂电路

而我们所提供的输入是稳压直流电源,电机控制中的控制二字指的就是通过6PWM,控制三相桥臂电路中的6MOS管的开断,来达到直流电源变正弦交流的目的。

注意:每个桥臂上有两个电力电子器件,比如IGBT。这两个IGBT不能同时导通,否则就会出现短路的情况。

》死区

因此,设计带死区(英飞凌中成为Deadtime)的PWM波可以防止上下两个器件同时导通。也就是说,当一个器件导通后关闭,再经过一段死区,这时才能让另一个导通。

 


》》死区的原理和作用

死区就是在上半桥关断后,延迟一段时间再打开下半桥或在下半桥关断后,延迟一段时间再打开上半桥,从而避免功率元件烧毁。这段延迟时间就是死区。总结:死区持续的时间区间内上、下半桥的元件都是关断的。

 

》》死区的副作用

死区时间是PWM输出时,为了使H桥或半H桥的上下管不会因为开关速度问题发生同时导通而设置的一个保护时段,所以在这个时间,上下管都不会有输出,当然会使波形输出中断,死区时间一般只占百分之几的周期。但是PWM波本身占空比小时,空出的部分要比死区还大,所以死区会影响输出的纹波,但应该不是起到决定性作用的。


2.     GTM and PWM 的生成 

GTM提供了两种可用于PWM生成的模块:

•定时器输出模块(TOM

•与ARU连接的定时器输出模块(ATOM

这两个模块均可用于生成多个PWM信号,相互依赖或相互独立。

TOM模块只能用于生成简单的PWM ATOM模块还可以生成复杂的信号,这些信号主要用于引擎管理应用程序中的点火/喷射脉冲的生成。

2.1 用于PWM生成TOM模块介绍

每个TOM(定时器输出模块)最多包含16个通道(TOM_CHx)。每个通道都有其自己的16位计数器,可用于生成PWM的边沿。

TOM通道分为两组,每组八个通道。每个组均由TOM全局通道控制(TGC)单元控制。

计数器频率可以从CMUCMU_FXCLK)提供的五个预分频器时钟之一中选择。此外,每个TOM通道均含有两个捕获比较单元(CCU0CCU1),以将计数器CN0与可配置值进行比较。 CCU0用于确定PWM的持续时间,而CCU1定义占空比持续时间。

使能后,在实际开始生成PWM之前,PWM通道首先计数到CM0的值。因此,第一个PWM周期的持续时间取决于CN0的初始值,该值在复位后为零。

注意:可以给通道预加载不同的CN0值,以实现不同相位的PWM

可以在CM0匹配(周期)上产生一个中断,而在CM1匹配(占空比)下产生另一个中断。。当TOM通道的计数器被该通道的前一个通道复位时,可以定义两个捕获比较单元,以生成任意PWM周期的脉冲,该周期由前一个TOM通道定义。

对于每个捕获比较单元,都有一个影子寄存器来存储下一个PWM周期的PWM特性个除此之外,还有一个为新的PWM周期选择不同的时钟预分频系数的影子寄存器。

关于这个模块的详细介绍请参见上一篇文章。


2.2 居中对齐和边沿对齐PWM

为了使用(ATOM来实现居中对齐和边沿对齐PWM,第一个通道(CH0)必须向所有其他后续通道提供主PWM周期和复位信号。 下图提供了一个示例:


生成任何类型的PWM调制以及对称/非对称死区时间,使用GTM都可以考虑以下方法:

-配置(ATOMx_CH0(主资源),以将复位信号发送到所有其他通道

-将其他所有通道也配置为在来自CH0TRIG [x-1])的触发信号上也要复位

-将正确的公式应用于所有相位和触发通道的CM0(周期)和CM1(占空比)寄存器(CH1..CH7)。

在以下各段中将提供一个实际的配置示例。

3. PWMAC驱动器功能概述

PWMAC驱动器的主要目标是为DC / AC逆变器生成启动命令,并有可能在命令生成期间的特定瞬间触发AD转换。

3.1 PWMAC通道和顺序

PWMAC通道(或PWMAC相位)由两个带死区时间的中心对齐PWM通道组成。这两个PWM通道可以是反相器相位的高端和低端。 PWMAC通道不能单独存在,而必须始终是PWMAC序列的一部分。每个PWMAC通道都有其独立的占空比。

PWMAC序列是共享相同参考时间的PWMAC通道的集合,因此序列中的所有PWM信号都以该参考时间为中心。此外,包含在相同序列中的所有PWMAC通道共享相同的周期和死区时间。下图显示了三个PWMAC通道的PWMAC序列。



3.2 ADC的PWMAC触发

可选地,每个PWMAC序列都拥有另一个数字信号,称为PWMAC触发,可以用作触发AD转换的源。触发器以“参考时间”为中心,并且可以指定“偏移”。见下图:


4. 带GTM的PWMAC驱动器

如前几节所述,GTM提供了两种对实现PWMAC驱动程序均有效的模块:TOMATOM

要实现一个PWMAC通道(或相位),该通道由两个具有指定死区时间的居中对齐的PWM组成,需要使用三个(ATOM通道:

•通道0提供参考周期(主资源)

•其他两个通道,通常是CH [i]CH [i + 1]

因此,要实现包含三相,需要的CH0以及其他六个(ATOM通道的PWMAC序列,以实现3个高侧(HS)和3个低侧(LS)居中对齐的PWM信号。

需要将通道零配置为将CCU0触发(周期匹配)发送到其他通道(GTM_ATOM_CH0.TRIG_OUT = 1)。

所有其他通道都需要配置为在从通道零的TRIG_0上开始重置自己的计数器(CN0),或者在达到其自己的编程周期后复位。

要启用此选项,需要将位字段GTM_ATOM_CHx_CTRL.RST_CC0设置为1

下图显示了一个生成带有三相加触发的序列的示例。

                                                                       


寄存器SR0(阴影寄存器)包含周期,而SR1包含占空比。为了生成居中对齐(或边沿对齐)的PWM信号,应采用以下公式:

当占空比HS0[0.00,0.50]0-100%)的范围内时。见下表:

 每个(ATOM通道都需要配置为以同步更新模式工作(使用影子寄存器)。下面代码提供了TOM[y]通道配置的示例。该配置对于ATOM还是有效的,区别在于ATOMGTM_ATOM[y] _CH [i] _CTRL.B.MODE位字段必须设置为2PWM模式),因为ATOM可以工作在四种不同的模式下,并且TGC寄存器(TOM全局控制)必须由AGCATOM全局控制)代替。以下是配置的代码示例:

GTM_TOM[y]_TGC0_GLB_CTRL.B.UPEN_CTRL[i]=0x10;//enable CH0 update from shadow reg. SR0/SR1
GTM_TOM[y]_TGC0_ENDIS_CTRL.B.ENDIS_CTRL[i]=0x10; //enable channel on an update trigger
GTM_TOM[y]_TGC0_FUPD_CTRL.B.FUPD_CTRL[i]=0x10; //Channel Force update enabled
GTM_TOM[y]_TGC0_OUTEN_CTRL.B.OUTEN_CTRL[i]=0x10//Output (A)TOM_OUT(0) enable/disable
GTM_TOM[y]_CH[i]_CTRL.B.CLK_SRC_SR = <clockSrc>; //Clk source select for channel 0,1,
GTM_TOM[y]_CH[i]_CTRL.B.SL = 0; //Signal level for duty cycle
0B Low signal level, 1B High signal level
GTM_TOM[y]_CH[i]_SR0.U = <Period>;
GTM_TOM[y]_CH[i]_SR1.U = <Duty>;
//Special Configuration
GTM_TOM[y]_CH[i]_CTRL.B.TRIGOUT = 1; //Only needed for the CH0 (Reference Period)
GTM_TOM[y]_CH[i]_CTRL.B.RST_CCU0 = 1; //Needed for each Phase Channel != CH0
//Only for ATOMs
GTM_ATOM[y]_CH[i]_CTRL.B.MODE = 2; //=> SOMP Mode (PWM Generation)

4.1 ADC触发

GTM模块提供了多种源来内部触发Delta-SigmaADCADC下图显示了可用于触发常规ADC的定时器通道。

 

注意:并非所有的ATOM/TOM模块都可以触发ADC转换。有关详细信息,请参阅最新版本的用户手册。注意:这些图未显示所有可用的触发源要触发相应的ADC通道,需要在位字段XTMODE中配置两个触发事件。要测量相电流,只需要一个触发事件即可。见下图:


PWMAc序列内部,触发信号的配置必须与其他相位信号完全相同,

配置要求如下:

-同步更新

-触发来自CH0(参考)的CCU0复位

要写入SR0SR1寄存器的值取决于偏移量和触发信号有效沿。

下面代码提供了一个触发器配置示例(TOMy_CH7)。

GTM_TOM[y]_TGC0_GLB_CTRL.B.UPEN_CTRL7=0x10;//enable CH0 update from shadow reg. SR0/SR1
GTM_TOM[y]_TGC0_ENDIS_CTRL.B.ENDIS_CTRL7=0x10; //enable channel on an update trigger
GTM_TOM[y]_TGC0_FUPD_CTRL.B.FUPD_CTRL7=0x10; //Channel Force update enabled
GTM_TOM[y]_TGC0_OUTEN_CTRL.B.OUTEN_CTRL7=0x10//Output (A)TOM_OUT(0) enable/disable
GTM_TOM[y]_CH7_CTRL.B.CLK_SRC_SR = <clockSrc>; //Clk source select for channel 0,1,
GTM_TOM[y]_CH7_CTRL.B.SL = 0; //Signal level for duty cycle
0B Low signal level, 1B High signal level
if (triggerEdge == IfxGtm_Raising) {
trigDuty = <CH0_Duty> + <triggerOffset>;
GTM_TOM[y]_CH7_SR0.U = trigDuty + <triggerWidth>;
GTM_TOM[y]_CH7_SR1.U = trigDuty;
Else {
trigPeriod = <CH0_Duty> + <triggerOffset>
GTM_TOM[y]_CH7_SR0.U = trigPeriod;
GTM_TOM[y]_CH7_SR1.U = trigPeriod- <triggerWidth>;
}
GTM_TOM[y]_CH7_CTRL.B.RST_CCU0 = 1; Needed for each Phase Channel != CH0

以下伪代码提供了VADC配置的示例。在该示例中,VADC Group0Group1TOM0_CH7TOM1_CH7触发。

sint32 vadc_init(void) {
uint32 gr, ch;
SCU_vResetENDINIT(0);
VADC_CLC.
U = 0x00000000; // load clock control register
while ((VADC_CLC.U & 0x00000002) == 2); // wait until module is enabled
VADC_KRST0.B.RST = 0x1;
VADC_KRST1.
B.RST = 0x1;
while (!VADC_KRST0.B.RSTSTAT)
;
VADC_KRSTCLR.
B.CLR = 0x1;
SCU_vSetENDINIT(0);
// setting clocks */
VADC_GLOBCFG.U = 0x000008009; //fspb divided by 10 (fadci=10MHz), fadcd=fspb
VADC_GLOBCFG.B.SUCAL = 0x1; // turn on calibration
for (gr = 0; gr < VADC_GROUPS; gr += 1)
MEM (&VADC_G0ARBCFG.
U + gr * 0x100) = 0x13;
for (gr = 0; gr < VADC_GROUPS; gr += 1)
MEM (&VADC_G0ARBPR.
U + gr * 0x100) = 0x07000321 | 0x0888;
/* use the same setting for all groups VADC0,1,2….*/
for (gr = 0; gr < VADC_GROUPS; gr++) {
for (ch = 0; ch < VADC_CHANNELS_PER_GROUP; ch++) {

/* setting result control registers for all channels (VADC_GxRCRy) */
MEM (&VADC_G0RCR0 + gr * 0x100 + ch) = (1 << 31); //Enable Service Request
/* setting channel registers for all channels (VADC_GxCHCTRy) */
MEM (&VADC_G0CHCTR0 + gr * 0x100 + ch) = 0x00100000; // GLOBAL Result Register
}
// setting STC to 0x1F, 12 bit resolution (VADC_GxICLASS0) */
MEM (&VADC_G0ICLASS0.U + gr * 0x100) = 0x00000003;
/* we wait until calibration is finished for this group VADC_GxARBCFG.CAL==0 */
while (MEM (&VADC_G0ARBCFG.U + gr * 0x100) & 0x10000000)
;
}
/* enable interrupt, enable and prio of group */
VADC_GLOBEVNP.U = 0x0;
//Service Request Enable, Wait for Read Mode
VADC_GLOBRCR.U = 0x81000000;
// Specific Configuration for ADC0 and ADC1 Configuration */
VADC_G0CHASS.U = 0x000000FF; /*all channels in the Gr0 assigned as priority channel*/
VADC_G1CHASS.U = 0x000000FF; /*all channels in the Gr1 assigned as priority channel*/
VADC_G0ASMR.B.ENGT =1; //Conversion req. are issued if at least one pending bit is set
VADC_G0ASMR.B.ENTR =1; //Enable External Trigger (GTM)
VADC_G1ASMR.B.ENGT =1; //Conversion req. are issued if at least one pending bit is set
VADC_G1ASMR.B.ENTR =1; //Enable External Trigger (GTM)
VADC_G0ASCTRL.U = EXTERNAL_TRIGGER << 8 /**! XTSEL => use gate as trigger source */
| TRIGGER_EVENT_RISING_EDGE << 13 /**! XTMODE: 3 = trigger on any edge*/
| 1 << 15 /**! allow write access to trigger config */
| ADC_X_TRIG_0 << 16 /**! GTSEL: => use GTM ADC Trigger 0 */
| 1 << 23 /**! allow write access to gate config */
;
VADC_G1ASCTRL.
U = EXTERNAL_TRIGGER << 8 /**! XTSEL => use gate as trigger source */
| TRIGGER_EVENT_FALLING_EDGE<< 13 /**! XTMODE: trigger Edge Sel*/
| 1 << 15 /**! allow write access to trigger config */
| ADC_X_TRIG_1 << 16 /**! GTSEL: => use GTM ADC Trigger 1 */
| 1 << 23 /**! allow write access to gate config */
;
/*! GTM Configuration - Select correct trigger from ADC0/ADC1 */
GTM_ADCTRIG0OUT0.B.SEL0 = 2; /**! TOM0_CH 7 ==> adc_x_trig_0 => ADC0*/
GTM_ADCTRIG1OUT0.B.SEL1 = 2; /**! TOM1_CH 7 ==> adc_x_trig_1 => ADC1*/
VADC_G0ASSEL.U = 0x000000FF; /**! channel 0 is selected as part of the scan*/
VADC_G1ASSEL.U = 0x000000FF; /**! channel 0 is selected as part of the scan*/
return (0);
}

5.实施示例–PWMAC

5.1 简介

驱动程序演示了如何使用GTM生成居中对齐的PWM波形。并且本章将概述驱动程序的API的含义(应用程序编程接口)及其用法。

5.2 PWMAC驱动程序

PWMAC驱动程序提供以下功能:

•基于TOMATOM模块的PWMAC HS /LS PWM生成

•每个序列的可配置相位数

•每个序列的灵活ADC触发器生成

•每个相位灵活的“死区时间”生成(对称)

•单个PWM信号的有效电平是可配置的。

PWMAC驱动程序使用一些基本方法在TOM / ATOM模块上生成PWM

这些方法或函数在IfxLldPwm.c文件(PWM底层驱动程序)中实现。见下图为驱动程序的架构:

   


5.3 PWMAC驱动程序API

         

函数名                                 

函数声明                                 

功能描述   

IfxPwmAc_configSequence  

IfxPwm_Status IfxPwmAc_configSequence  (IfxPwmAc_Sequence seqId, IfxPwmMAC_CfgSequence* ptrCfgSequence)

PWMAC  <seqId> Sequence configuration.

IfxPwmAc_setEnable  

IfxPwm_Switch IfxPwmAc_setEnable  ( IfxPwmAc_Sequence pwmSequenceId, IfxPwmAc_SwitchMode enDisSw ,  IfxPwm_Status* status )

Function to  enable the Sequence <seqId>

IfxPwmAc_configTrigger  

IfxPwm_Status IfxPwmAc_configTrigger  ( IfxPwmAc_Sequence pwmSequenceId, uint32 triggerOffset, IfxPwm_ActiveEdge  triggerEdge)

Function to  configure a trigger for the Sequence <seqId>

IfxPwmAc_setDutyPeriod  

IfxPwm_Status IfxPwmAc_setDutyPeriod(Ifx  PwmAc_Sequence seqId, uint32 period, uint32* duty);

Function to  update the Period and/or the duty of all the AC Phases inside the Sequence  <seqId>

传递给所有函数的<seqId>索引相应的结构体数组<sequenceChIdArray>中的元素,它包含所有序列的静态配置。

5.4 驱动程序配置

为了配置驱动程序,要做的第一步是定义一个包含序列静态配置的数组。数组为每个序列指定要使用的(ATOM通道。该数组在pwmAc_test.c文件中定义

      

IfxPwmAc_SequenceChannelsDef sequenceChIdArray[PWMAC_SEQ_MAX] =
{
//Sequence1 (FirstSequence),
{ IfxGtm_Tom, //Module Time: TOM or ATOM
IfxGtm_Tom0, //Module Number
{ [0]=IfxGtm_TomCh1, //HS0 Channel, LS0 always the next CH (i.e. CH2)
[1]=IfxGtm_TomCh3, //HS1 Channel, LS1 always the next CH (i.e. CH4)
[2]=IfxGtm_TomCh5 //HS2 Channel, LS2 always the next CH (i.e. CH6)
},
IfxGtm_TomCh7 }, //Trigger Channel (if needed), shall be always CH7 or CH14
//Sequence2 (SecondSequence),
{ IfxGtm_Tom,
IfxGtm_Tom1,
{ [0]=
IfxGtm_TomCh1,
[1]=
IfxGtm_TomCh3,
[2]=
IfxGtm_TomCh5 },
IfxGtm_TomCh7 },
//Sequence3,
………
………
};


第二步是配置序列:

IfxPwmAc_CfgSequence seqCfg,seqCfg1;
/*First Sequence*/
seqCfg.period = PWM_PERIOD; //Reference Period
seqCfg.PwmAcPhaseNumber = 3; //3 phases
seqCfg.deadTimes[0] = 500; //=> DT 1st Phase (5us)
seqCfg.deadTimes[1] = 600; //=> DT 2nd Phase (6us)
seqCfg.deadTimes[2] = 700; //=> DT 3rd Phase (7us)
/*Signal Levels*/
seqCfg.signalLevelHS[0] = IfxGtm_SignalHigh;
seqCfg.
signalLevelHS[1] = IfxGtm_SignalHigh;
seqCfg.
signalLevelHS[2] = IfxGtm_SignalHigh;
seqCfg.
signalLevelLS[0] = IfxGtm_SignalLow;
seqCfg.
signalLevelLS[1] = IfxGtm_SignalLow;
seqCfg.
signalLevelLS[2] = IfxGtm_SignalLow;
seqCfg.
dutyCycles[0] = 500; // DC 1st Phase 50.0%
seqCfg.dutyCycles[1] = 250; // DC 2nd Phase 20.0%
seqCfg.dutyCycles[2] = 750; // DC 3rd Phase 75.0%
/*Second Sequence*/
seqCfg1.period = PWM_PERIOD;
seqCfg1.
PwmAcPhaseNumber = 2; //2 phases
seqCfg1.deadTimes[0] = 500; //=> DT 1st phase (5us)
seqCfg1.deadTimes[1] = 600; //=> DT 2nd phase (6us)
seqCfg1.signalLevelHS[0] = IfxGtm_SignalHigh;
seqCfg1.
signalLevelHS[1] = IfxGtm_SignalHigh;
seqCfg1.
signalLevelLS[0] = IfxGtm_SignalLow;
seqCfg1.
signalLevelLS[1] = IfxGtm_SignalLow;
seqCfg1.
dutyCycles[0] = 500; // 50.0%
seqCfg1.dutyCycles[1] = 250; // 25.0%
还可以指定要用于每个TOM / ATOM 通道的AURIX 端口引脚。

 

/**!
* PWM AC channels mapping to IO PORTs
*/
IfxPwm_ModulePortOutTable modulePortOutTable[NUM_TOUT_PINS] = {
/*timer------, channel------, port, pin, toutNum, iocrCfg*/
{ IfxGtm_Tom0, IfxGtm_TomCh0, (uint32*) &P00_IOCR8, 9, TOUT18, A_COL }, //P00.9
{ IfxGtm_Tom0, IfxGtm_TomCh1, (uint32*) &P00_IOCR8, 10, TOUT19, A_COL },//P00.10 HS
{ IfxGtm_Tom0, IfxGtm_TomCh2, (uint32*) &P00_IOCR8, 11, TOUT20, A_COL }, //P00.11 LS (0)
{ IfxGtm_Tom0, IfxGtm_TomCh3, (uint32*) &P00_IOCR12, 12, TOUT21, A_COL }, //P00.12
{ IfxGtm_Tom0, IfxGtm_TomCh4, (uint32*) &P14_IOCR0, 1, TOUT102, A_COL }, //P14.1
{ IfxGtm_Tom0, IfxGtm_TomCh5, (uint32*) &P10_IOCR8, 8, TOUT110, A_COL }, //P10.8
{ IfxGtm_Tom0, IfxGtm_TomCh6, (uint32*) &P10_IOCR4, 4, TOUT106, A_COL }, //P10.5
{ IfxGtm_Tom0, IfxGtm_TomCh7, (uint32*) &P13_IOCR0, 2, TOUT93, A_COL }, //P13.2 (TRIG)
{ IfxGtm_Tom1, IfxGtm_TomCh0, (uint32*) &P20_IOCR12, 12, TOUT68, A_COL }, //P20.12
{ IfxGtm_Tom1, IfxGtm_TomCh1, (uint32*) &P20_IOCR12, 13, TOUT69, A_COL }, //P20.13 HS (0)
{ IfxGtm_Tom1, IfxGtm_TomCh2, (uint32*) &P20_IOCR12, 14, TOUT70, A_COL }, //P20.13 LS (0)
{ IfxGtm_Tom1, IfxGtm_TomCh3, (uint32*) &P14_IOCR0, 0, TOUT80, B_COL }, //P14.0 HS (1)
{ IfxGtm_Tom1, IfxGtm_TomCh4, (uint32*) &P00_IOCR4, 5, TOUT14, B_COL }, //P00.5 LS (1)
{ IfxGtm_Tom1, IfxGtm_TomCh5, (uint32*) &P00_IOCR4, 6, TOUT15, B_COL }, //P00.6 HS (2)
{ IfxGtm_Tom1, IfxGtm_TomCh6, (uint32*) &P00_IOCR4, 7, TOUT16, B_COL }, //P00.5 LS (2)
{ IfxGtm_Tom1, IfxGtm_TomCh7, (uint32*) &P00_IOCR8, 0, TOUT17, B_COL }, //P00.8 (TRIG.)
……
};

本文授权转载自公众号“谈过AutoSar”,作者初光
嵌入式ARM 关注这个时代最火的嵌入式ARM,你想知道的都在这里。
评论
  •  探针台的维护直接影响其测试精度与使用寿命,需结合日常清洁、环境控制、定期校准等多维度操作,具体方法如下:一、日常清洁与保养1.‌表面清洁‌l 使用无尘布或软布擦拭探针台表面,避免残留清洁剂或硬物划伤精密部件。l 探针头清洁需用非腐蚀性溶剂(如异丙醇)擦拭,检查是否弯曲或损坏。2.‌光部件维护‌l 镜头、观察窗等光学部件用镜头纸蘸取wu水jiu精从中心向外轻擦,操作时远离火源并保持通风。3.‌内部防尘‌l 使用后及时吹扫灰尘,防止污染物进入机械滑
    锦正茂科技 2025-04-28 11:45 109浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 184浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 163浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 324浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 256浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 251浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 187浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 154浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 223浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 221浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 236浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 206浏览
我要评论
1
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦