TeslaAIDay-特斯拉自动驾驶FSD的进展和算法软件技术之算法

原创 Vehicle 2022-10-05 10:11
2022年的特斯拉 AI Day分为三大主题:分别为AI机器人- Optimus,AI智能驾驶 FSD和AI超算芯片技术。我在上篇文章《Tesla 特斯拉AI day - 关于特斯拉机器人的进展和技术》大概介绍了其机器人开发平台的一些硬件技术和开发思路。本文我将介绍其第二部分,这一部分主要是其人工智能算法技术,也是其汽车,机器人共用的底层算法,比较硬核和重磅。
在介绍算法之前,我们先看下特斯拉自动驾驶FSD的一些进展
特斯拉表示从2021年开始交付的特斯拉从硬件层面上都应该支持自动驾驶(此处是“自动驾驶”不是我文章之前常用的词“智能驾驶”),特斯拉团队现在做的是一步一步的提升自动驾驶等级。
目前其自动驾驶软件FSD的使用客户已经从2021年的2千人到现在达16万人。仅仅去年就通过480万段数据训练了超过75000个算法模块,其中交付给车辆281个算法模块,完成了35次版本的发布。
当然特斯拉还是吹牛了一把,他们认为特斯拉能够支持点对点自动驾驶,了解什么是点对点自动驾驶可以点击《浅谈高阶智能驾驶-领航辅助的技术与发展》,他包括从停车场出发实现城市驾驶的交通灯识别停车驾驶,十字路口与其他车辆交互通行,转弯等等。
当然这些进展除了版本迭代内部过程数据化,一年之内使用FSD的客户暴增80倍,等量化很好表达了进展之外,他对消费者感知提升的进展并不是讲的很清楚,你迭代了多少版本用了多少数据,有多少消费者买单并不能说明你使用起来体验很好。其实如果特斯拉能够采用我在《2021DMV自动驾驶公司KPI排行榜》文章中介绍美国加州交通管局用来评价自动驾驶的性能的指标-每次人为介入接管之后行驶公里数KPI(Km Per Intervention)来秀其进展那么就硬核了。
以上就是特斯拉自动驾驶FSD的最新进展,总的来讲数据很震撼,但对消费者使用感知的直接提升数据表达不是特别清楚。
关于特斯拉的FSD的算法技术部分,此次特斯拉2022 AI Day把其FSD背后的技术,按照从终端客户使用感觉到的使用问题开始,然后一步一步深入背后的算法创新优化,算法背后的数据训练等串起来讲。我在这里把他总结分成了如下四个部分,两篇文章去分享:
Tesla AI Day -特斯拉自动驾驶FSD的进展和算法软件技术之算法
1. 路径以及运动规划算法:
当算法植入到终端(车或者机器人),终端通过算法感知环境,规划路径,确保安全,平顺前进。
2. 环境感知算法:
- Occupancy 算法,也就是可活动空间探测
- Lane & Objects 车道以及物体算法,交通中的信息语义层也就是车道线,物体识别以及运动信息。

Tesla AI Day -特斯拉自动驾驶FSD的进展和算法技术之数据和计算
3. 训练算法设施以及软件:
- 训练数据的设施,超算中心用来支持数据处理,算法训练。
- 人工智能算法的编译器以及推理,就是训练算法的框架以及软件方法。

4. 数据标注,采集和虚拟:
- 自动标注算法,训练环境感知算法必须需要已经具有标签的数据,自动标注算法就是标注数据,训练环境感知算法识别这类场景或者物体。
- 环境虚拟,合成制造虚拟场景。
- 数据引擎,现实场景车辆,测试软件获取真实场景环境数据,闭环数据引擎,更正标签等。

希望能给大家带来一些信息,当然看特斯拉的算法有点烧脑,所以错误难免,还请多多指正;另外为了能帮助大家理解,可能很多细节简化,后面希望有时间能够详细分解深入再分享给大家。
1. 路径以及运动规划算法
什么是路径规划?我之前文章《自动驾驶路径运动轨迹生成方法》有详细分享,他主要是搜索要遵循的路径、避开障碍物并生成确保安全、舒适和高效的最佳轨迹,让车辆行驶。
场景越复杂,路径以及运动规划更难,所以,大家可以看到当前很多智能驾驶的使用场景基本都在高速环路等半封闭的场景。
难点在哪里?
特斯拉此次AI Day分享了自动驾驶最难的场景之一,也是最考验路径规划的场景 - 拥堵十字路口,前方道路有行人横穿和行车占道通行的情况下,路径以及运动规划如何进行安全舒适的无保护左转。
一般遇到这种场景,自动驾驶的车辆可能的行为有:
  • 坚持自己的路径,让其他车辆,行人等交通参与者让自己。
  • 在行人和汽车等交通参与者中间找到空隙行驶。
  • 礼让汽车和行人,等他们走了,再走。这是当前大部分国内智能驾驶的选择。
那么一般自动驾驶软件判断运算的步骤如下:
  1. 对当前场景下所有交通参与者进行运动轨迹预测。
  2. 基于各个轨迹的成本以及约束进行计算。
  3. 让本车以及其他交通参与者的运动轨迹进行交互,特斯拉表示这个运算过程大概耗时10ms,一般一个拥堵的十字路口左转场景,会有超过20个交互相关的交通参与者,有超过100种交互相关组合,那么目标路径规划时间大概是50ms
如何实时解决这种场景?
特斯拉表示其采用Interaction Search交互搜寻算法,寻找最优的结果,它分为以下5个步骤:
  1. 视觉环境识别 - 采用稀疏抽取的方法抽取潜在特征来识别车道,障碍物,移动物体等交通参与者。
  2. 选定目标候选人 - 确定车道线,非结构化区域来形成可通行的空间信息。
  3. 产生可能的轨迹 - 通过轨迹优化,神经元规划生成运动轨迹。
  4. 产生运动方案 - 例如到底是强行插入交通还是等待行人通行。
  5. 确定轨迹和时间,速度 - 当确定好运动方案时候,还需要考虑运动轨迹下的其他车辆通行情况,多种考虑之后才能输出运动规划。

特斯拉表示第5步,是最难的,因为随着每一步约束的增加,每一种新的轨迹生成运算都需要1-5ms,那么你想想这种情况下大约有一百多种方案,那么显然都快需要0.5s的时间用来运算了。
特斯拉想到的方案是lightweight queryable networks轻量化可查询的神经元算法,这种算法是去查找基于其人类驾驶方法场景库以及线下虚拟仿真运算出的结论,也就是查找库已有方案,看他的运动轨迹会怎么做,这样可以在大约100us,也就是0.1ms内来生成一种轨迹。
有了多种轨迹和运动规划之后,接下来还需要选择一种,这个时候特斯拉算法采取对碰撞检查,控制舒适性,需要介入的可能性,是否拟人化等多项要求,进行打分来确定,选定最终轨迹和运动规划
以上就是特斯拉利用其路径规划算法,在解决交通繁忙条件下无保护左转采用的交互搜寻算法,寻找最优的结果的流程。这里一个比较妙的方法是特斯拉有一个人类驾驶行为和仿真参考库提供检索。
2. 环境感知算法
环境感知是一切智能驾驶的源头,众所周知特斯拉环境感知主要依赖视觉,当然我之前文章《智能驾驶要用多少个激光雷达?分别放在哪里?什么作用?》等都表示视觉无深度信息容易出问题,但这次特斯拉介绍了其Occupancy Networks 算法用来探索可运动3D空间,那它是否能够解决视觉深度信息呢?按照特斯拉的理念应该是能,只等待算法的进化,此次没有细节,让我们先回到其Occupancy Networks 算法
Occupancy Network 算法能干什么?
特斯拉在过去几年中一直开发的算法,他主要是通过特斯拉外部的8个摄像头视频流,去构建基于几何体积块的环绕汽车的3D空间,并持续去识别全貌即使短时间内有遮挡物,能够识别标注Occupancy(翻译成占住的?)物体例如马路牙子,汽车,行人等,他还能识别物理的流动,来预测一些偶然的流体运动例如长巴士,拖挂车的甩尾,这样Occupancy Network 算法能够高效识别感兴趣的点。
特斯拉表示其Occupancy Network算法在算力和内存之间取得很好的效率,大概10ms就可建模完成,目前此算法已经运行在所有FSD的特斯拉上。
Occupancy Network 算法工作原理是怎样的?
特斯拉表示其Occupancy Network算法工作流大概分以下五个步骤:
1. Image Input ,8个摄像头依据摄像头标定矫正后直接输入给算法,视觉输入不使用ISP(以人为本的图像处理)同时因为摄像头的原始数据是4 位彩色它能提供16倍的动态范围给到算法,所以可以减少输入的延迟。了解摄像头基本原理点击《智能汽车要用多少个摄像头?分别干啥?什么原理?》。
2. Image Featurizers,使用预训练的深度神经网络模型对图像进行特征化,输入给下一步。特斯拉采用RegNet 以及BiFPNs算法来特征化图像,特征化基本就是识别物体了。
3. Spatial Attention,是卷积神经网络中用于空间注意的模块。它利用特征的空间间关系生成空间注意力图,也就是构建空间信息。这里特斯拉提到两个算法Mlticam Qurey Emdedding 也就是多摄像头查询,Spatial Query空间查询然后输入给注意力Attention算法,这里就是构建空间。
4. Temporal Alignment,分为两个部分,一个部分是自己车辆的轨迹对齐,另外一个将各个识别特征物对齐,初步形成了时空特征。
5. Deconvolutions,去卷积也就是把浓缩的特征反向成物体。这里其中有一个一直是普通视觉算法的噩梦,就是路面地理信息,例如上下坡度,特斯拉表示其算法能够识别路面的地理特征。
6. Volume Outputs,去卷积之后的反向物体,将从空间上能代表物体大小,被放置在时空中,而且此类空间占据还根据路面的情况自动匹配,这里特斯拉讲到一个算法NeRF state,能够表示具有复杂遮挡的详细场景几何,这样可以让时空更加真实
7. Queryable Outputs,这里很有意思,去卷积之后的反向物体有些可能不能完全代表真实的物体的大小,所以特斯拉算法采用查询法去数据库中查询真实世界的结果,进行位置和大小的矫正再进行空间放置。
Occupancy Networks 算法可以通过摄像头收割数据,然后利用NeRFs算法构建真实世界的精准映射-虚拟世界,当然特斯拉当前的虚拟构建显然做不到把摄像头色彩完全投影进来,特斯拉目前主要任务是通过车辆收集数据构建可支持自动驾驶所需关键信息的虚拟3D世界,特斯拉也想收割全球以及其各种天气下的信息,当然这当中肯定还有很多技术问题有待解决,所以特斯拉也趁机人才招募广播一把。
特斯拉表示其Occupancy Networks 算法都是自动标注算法训练而成的,特斯拉这个环境感知算法听起来确实厉害,他在Bird's-eye view算法上又进了一步
有了Occupancy Networks 算法可以让自动驾驶对可行驶空间有了认知,但是交通道路是有自己的规则的,其中最直观的就是车道线,所以接下来让我们看看特斯拉对于车道线的识别有什么新内容。
为什么要使用新的车道识别算法
特斯拉表示其老的车道识别算法是使用2D平面,分割算法例如RegNet,他在高速以及清晰高度结构化的场景应用的比较好,目前基本上国内车型应该都采用此类算法,当然国内的道路结构化都比较好,但在国外那种路面国内车型都是挑战,毕竟国外的设施都没有国内新。
当然车道清晰等也不是特斯拉老算法的主要问题,特斯拉在国外训练的算法对于清晰度应该也不是问题,问题是城市应用场景中,简单转弯分隔的结构化车道,繁忙交通中交汇口前车遮挡等无法采集到足够的数据的时候,此类问题是经典车道识别算法无法解决。
当然国内依赖高精地图的智能驾驶方案,则没有此类问题,但他需要准确的高精地图,这就是为什么现在的城市领航辅助迟迟没上,他们必须要有高精地图。高精地图,第一需要测绘了,第二需要有关部门批准释放了。
所以不使用高精地图仅仅依靠视觉算法的特斯拉给出的答案是:用神经元算法预测,生成全套车道实例及其相互连接。
如何实现?
特斯拉表示其最新的FSD 车道算法由以下三个组件组成
1. 视觉组件 - 车辆上八个摄像头的视频流输入卷积层、注意层和其他神经网络层进行编码,或许丰富的环境信息,然后生成带有粗略路线图的表示。
2. 地图组件 - 额外的神经网络层编码的道路级地图数据,特斯拉称之为车道引导,这张地图不是高清地图,但它提供了许多关于交叉口的有用提示,车道内的拓扑结构,交叉路口的车道数,以及一组其他属性。
这里的前两个组成部分产生了一个密集张量世界,可以对世界进行编码,但特斯拉真正想做的是转换这个稠密的张量为智能驾驶车道的连通集合。
3. 语言组件 - 特斯拉将这个任务看成一个图像转字幕的语言任务,这个任务的输入是这个稠密的张量,输出的特殊的文本语音用来预测车道连通。
用这种车道语言单词和符号对车道进行编码,这些单词和符号就是3D中的车道位置,在单词符号中引入修饰语,对连接词进行编码通过将任务建模为语言问题,我们可以利用语言人工智能算法的最新技术来处理道路的多重连通集合。
所以特斯拉的方法是用最先进的语言建模和机器学习算法来解决计算机视觉问题,语言算法应该在人工智能算法中属于比较先进发展较快的一个分支,主要原因应该是语言数据更易得和数据量小,便于学习训练,此次特斯拉发布的车道线识别算法的亮点就是这个。如果展开这个算法估计文章得再加几千字,所以等我有机会深入理解,再详细分享。
总结
总的来讲其算法此次有几个亮点,对于十字路口算法,构建了人类驾驶行为和虚拟驾驶行为库供算法查询从而节省计算时间,利用各项指标去框定选择最优路径。对于车道识别算法,创新性的借鉴语言算法来解决视觉问题。
以上就为,特斯拉2022年AI Day大概发布的算法方面的进展和优化,时间仓促和水平有限,错误难免还请留言交流,关注我们,下一篇文章介绍算法背后的数据,虚拟,算法编译等。
参考文章以及图片

  1. 特斯拉AI Day视频

    *未经准许严禁转载和摘录-获取参考资料方式:

加入我们的知识星球Vehicle 可以下载公众号海量参考资料包含以上参考资料。

>>>>

相关推荐


  • Tesla 特斯拉AI day - 关于特斯拉机器人的进展和技术
  • 保时捷IPO -给追梦人的汽车品牌的资本追梦
  • 2000TOPs的英伟达和高通要把智能汽车带向何方?
  • 大疆能否在智驾赛道“能上天”?
  • 安霸的智能汽车芯片软件布局和雄图
  • 芯片产业链101
  • 从大众新CEO的十个工作重点看大众汽车电气化,软件定义汽车的方向和方法
  • 芯片和操作系统 - 当前汽车供应链面临的关键问题思考
  • 五图看懂自动驾驶AI半导体生态链

Vehicle 不断奔跑才能应对变化,与汽车业内企业个人一起成长
评论 (0)
  • 文/Leon编辑/cc孙聪颖‍4月18日7时,2025北京亦庄半程马拉松暨人形机器人半程马拉松正式开跑。与普通的半马比赛不同,这次比赛除了有人类选手,还有21支人形机器人队伍参赛,带来了全球首次人类与机器人共同竞技的盛况。参赛队伍中,不乏明星机器人企业及机型,比如北京人形机器人创新中心的天工Ultra、松延动力的N2等。宇树G1、众擎PM01,则是由城市之间科技有限公司购置及调试,并非厂商直接参赛。考虑到机器人的适用场景和续航力各有不同,其赛制也与人类选手做出区别:每支赛队最多可安排3名参赛选手
    华尔街科技眼 2025-04-22 20:10 89浏览
  •   电磁频谱数据综合管理平台系统解析   一、系统定义与目标   北京华盛恒辉电磁频谱数据综合管理平台融合无线传感器、软件定义电台等前沿技术,是实现无线电频谱资源全流程管理的复杂系统。其核心目标包括:优化频谱资源配置,满足多元通信需求;运用动态管理与频谱共享技术,提升资源利用效率;强化频谱安全监管,杜绝非法占用与干扰;为电子战提供频谱监测分析支持,辅助作战决策。   应用案例   目前,已有多个电磁频谱数据综合管理平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁频谱数
    华盛恒辉l58ll334744 2025-04-23 16:27 100浏览
  • 文/Leon编辑/cc孙聪颖‍在特朗普政府发起的关税战中,全球芯片产业受到巨大冲击,美国芯片企业首当其冲。据报道称,英伟达本周二公布的8-K文件显示,美国政府通知该公司向中国(包括中国香港及澳门)销售尖端芯片(H20)时,需要获得美国政府的许可。文件发布后,英伟达预计会在第一季度中额外增加55亿美元的相关费用计提。随后,英伟达股价单日下跌6.9%,市值一夜蒸发约1890亿美元(约合人民币1.37万亿元)。至截稿时,至截稿时,其股价未见止跌,较前日下跌4.51%。北京时间4月17日,英伟达创始人、
    华尔街科技眼 2025-04-22 20:14 87浏览
  • 在科技飞速发展的当下,机器人领域的每一次突破都能成为大众瞩目的焦点。这不,全球首届人形机器人半程马拉松比赛刚落下帷幕,赛场上的 “小插曲” 就掀起了一阵网络热潮。4月19日,北京亦庄的赛道上热闹非凡,全球首届人形机器人半程马拉松在这里激情开跑。20支机器人队伍带着各自的“参赛选手”,踏上了这21.0975公里的挑战之路。这场比赛可不简单,它将机器人放置于真实且复杂的动态路况与环境中,对机器人在运动控制、环境感知和能源管理等方面的核心技术能力进行了全方位的检验。不仅要应对长距离带来的续航挑战,还要
    用户1742991715177 2025-04-22 20:42 83浏览
  •   后勤实验仿真系统平台深度解析   北京华盛恒辉后勤实验仿真系统平台依托计算机仿真技术,是对后勤保障全流程进行模拟、分析与优化的综合性工具。通过搭建虚拟场景,模拟资源调配、物资运输等环节,为后勤决策提供数据支撑,广泛应用于军事、应急管理等领域。   应用案例   目前,已有多个后勤实验仿真系统平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润后勤实验仿真系统平台。这些成功案例为后勤实验仿真系统平台的推广和应用提供了有力支持。   一、核心功能   (一)后勤资源模拟
    华盛恒辉l58ll334744 2025-04-23 15:39 81浏览
  •   陆地边防事件紧急处置系统平台解析   北京华盛恒辉陆地边防事件紧急处置系统平台是整合监测、预警、指挥等功能的智能化综合系统,致力于增强边防安全管控能力,快速响应各类突发事件。以下从系统架构、核心功能、技术支撑、应用场景及发展趋势展开全面解读。   应用案例   目前,已有多个陆地边防事件紧急处置系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润陆地边防事件紧急处置系统。这些成功案例为陆地边防事件紧急处置系统的推广和应用提供了有力支持。   一、系统架构   感知层:部
    华盛恒辉l58ll334744 2025-04-23 11:22 90浏览
  • 一、行业背景与市场需求高血压作为全球发病率最高的慢性病之一,其早期监测与管理已成为公共卫生领域的重要课题。世界卫生组织数据显示,全球超13亿人受高血压困扰,且患者群体呈现年轻化趋势。传统血压计因功能单一、数据孤立等缺陷,难以满足现代健康管理的需求。在此背景下,集语音播报、蓝牙传输、电量检测于一体的智能血压计应运而生,通过技术创新实现“测量-分析-管理”全流程智能化,成为慢性病管理的核心终端设备。二、技术架构与核心功能智能血压计以电子血压测量技术为基础,融合物联网、AI算法及语音交互技术,构建起多
    广州唯创电子 2025-04-23 09:06 126浏览
  •   无人机结构仿真与部件拆解分析系统平台解析   北京华盛恒辉无人机结构仿真与部件拆解分析系统无人机技术快速发展的当下,结构仿真与部件拆解分析系统平台成为无人机研发测试的核心工具,在优化设计、提升性能、降低成本等方面发挥关键作用。以下从功能、架构、应用、优势及趋势展开解析。   应用案例   目前,已有多个无人机结构仿真与部件拆解分析系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机结构仿真与部件拆解分析系统。这些成功案例为无人机结构仿真与部件拆解分析系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-23 15:00 120浏览
  •   复杂电磁环境模拟系统平台解析   一、系统概述   北京华盛恒辉复杂电磁环境模拟系统平台是用于还原真实战场或特定场景电磁环境的综合性技术平台。该平台借助软硬件协同运作,能够产生多源、多频段、多体制的电磁信号,并融合空间、时间、频谱等参数,构建高逼真度的电磁环境,为电子对抗、通信、雷达等系统的研发、测试、训练及评估工作提供重要支持。   应用案例   目前,已有多个复杂电磁环境模拟系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润复杂电磁环境模拟系统。这些成功案例为复杂电
    华盛恒辉l58ll334744 2025-04-23 10:29 126浏览
  • 前言本文主要演示基于TL3576-MiniEVM评估板HDMI OUT、DP 1.4和MIPI的多屏同显、异显方案,适用开发环境如下。Windows开发环境:Windows 7 64bit、Windows 10 64bitLinux开发环境:VMware16.2.5、Ubuntu22.04.5 64bitU-Boot:U-Boot-2017.09Kernel:Linux-6.1.115LinuxSDK:LinuxSDK-[版本号](基于rk3576_linux6.1_release_v
    Tronlong 2025-04-23 13:59 70浏览
  • 故障现象一辆2016款奔驰C200L车,搭载274 920发动机,累计行驶里程约为13万km。该车组合仪表上的防侧滑故障灯、转向助力故障灯、安全气囊故障灯等偶尔异常点亮,且此时将挡位置于R挡,中控显示屏提示“后视摄像头不可用”,无法显示倒车影像。 故障诊断用故障检测仪检测,发现多个控制单元中均存储有通信类故障代码(图1),其中故障代码“U015587 与仪表盘的通信存在故障。信息缺失”出现的频次较高。 图1 存储的故障代码1而组合仪表中存储有故障代码“U006488 与用户界
    虹科Pico汽车示波器 2025-04-23 11:22 55浏览
  • 一、技术背景与市场机遇在智能家居高速发展的今天,用户对家电设备的安全性、智能化及能效表现提出更高要求。传统取暖器因缺乏智能感知功能,存在能源浪费、安全隐患等痛点。WTL580-C01微波雷达感应模块的诞生,为取暖设备智能化升级提供了创新解决方案。该模块凭借微波雷达技术优势,在精准测距、环境适应、能耗控制等方面实现突破,成为智能取暖器领域的核心技术组件。二、核心技术原理本模块采用多普勒效应微波雷达技术,通过24GHz高频微波信号的发射-接收机制,实现毫米级动作识别和精准测距。当人体进入4-5米有效
    广州唯创电子 2025-04-23 08:41 115浏览
我要评论
0
1
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦