INCA软件ProF脚本扩展应用|附下载

汽车ECU开发 2022-10-03 18:28

INCA软件

INCA是车辆控制器标定的首选软件之一,主要包含功能模型标定、测量数据分析(MDA)、标定数据管理(CDM)、控制器刷新(ProF)功能等。而本文将介绍常用却又陌生的ProF脚本的扩展用法,通过编写ProF脚本与外面程序配合可实现各种诊断功能。例如通过ProF脚本读取/解析控制器的故障码及故障码冻结帧信息等。

ProF脚本扩展应用效果展示

1、在ProF刷新界面执行读取控制器故障信息Read - DTC Information,ProF会自动读取/解析控制器故障码状态及冻结帧信息,最终将读取的故障码、冻结帧原始数据、故障信息报告记录成文件保存到ProF文件夹中。

含:故障码数据文件dtc.dat、冻结帧数据文件snapshot.dat 、故障信息文件snapshot.txt

 

故障信息文件snapshot.txt

2、在ProF刷新界面执行读取控制器信息Read - Module Information,ProF会自动读取在用户配置文件中定义的DID信息,同样可以生成报告保存到ProF文件夹中。

控制信息文件did.txt

3、通过修改用户配置文件,可将上述功能适配到不同的控制器或项目

故障码/冻结帧介绍

当控制器软件检测到故障发生时,软件故障管理模块会将故障码以及故障时刻的关键的变量信息保存至非易失的存储区域。在故障码消失前,用户均可使用诊断仪读取故障信息,用于分析故障产生的根本原因。

一、冻结帧类型分为三类:

1、OBD冻结帧: 保存与整车排放的变量参数(如水温、车速、发动机转速、油门踏板位置等) 通常仅有与排放相关控制器带OBD冻结帧功能

2、全局冻结帧:保存整车/控制器共性的变量参数(如蓄电池电压、整车里程、万年历时钟、环境温度等)

3、局部冻结帧:保存与触发该冻结帧故障码相关的变量参数(如当出现离合器打滑故障时,保存的参数信息可以是离合器输入端转速、输出端转速、离合器压力、离合器传递扭矩等)

二、冻结帧分配机制

如下图1所示,每个故障码产生时均会保存OBD冻结帧与全局冻结帧以及一个该故障码指定的局部冻结帧;例如:

故障码1 保存(OBD冻结帧+全局冻结帧+局部冻结帧n) 

故障码2 保存(OBD冻结帧+全局冻结帧+局部冻结帧1) 

故障码3 保存(OBD冻结帧+全局冻结帧+局部冻结帧2) 

三、故障码/冻结帧的读取

1、首先通过UDS 19 02 08 指令获取当前已确认的故障码信息。控制器反馈的故障码包含4个字节形式如下

2、通过UDS 19 04 DTC1 DTC2 DTC3 00/01/02/FF 指令读取该故障码的指定类型冻结帧信息。其中 DTC1 DTC2 DTC3 表示指定故障码,

00表示读取OBD冻结帧信息;

01表示读取全局冻结帧信息;

02表示读取对应的局部冻结帧信息(博世/联电方式)

FF表示读取OBD冻结帧信息+全局冻结帧信息+对应的局部冻结帧信息

3、控制器反馈的冻结帧数据格式如下(读取FF类型):

59 04 DTC1 DTC2 DTC3 FF DTCstatus 00 0X Data... 01 0X Data.... 02 0X Data... ;OBD冻结帧和全局冻结定义都是一致的,可以按照信号定义做统一解析;而局部冻结帧的解析则相对较麻烦,因为每个故障码的局部冻结帧编号是不同的;首先需要获取故障码的局部故障码编号后找到对应的局部冻结帧定义来做解析。

PS:当前新一代的控制器,Nvm区域都相当充足。通常局部冻结帧的数据长度可超过200 Bytes,一个局部冻结帧可包含软件中的几乎所有关键参数,因此也可将所有的故障码均冻结同一个局部冻结帧,而该局部冻结帧已经包含所有故障码所需的参数变量。比如(模糊处理)

ProF脚本指令介绍

ProF的全称是(Programimg Flasher / Flow?)  不太清楚。只知道ProF脚本中包含一些常用的配置、显示、流控制、字符串变量、数值变量、UDS指令、调用外部程序指令、写入/读取文件指令(遗憾的是仅支持二进制格式写入/读取,这是最蛋疼的地方然而仅使用ProF脚本是无法实现自动读取每个故障码的冻结帧,更不具备解析冻结帧信息功能。

解决方案 - ProF脚本+Windows控制台程序+用户配置文件

基于ProF脚本指令功能的不足现状,结合分析当前ProF脚本支持的功能,决定采取额外使用C#编写一个可被ProF脚本调用的Windows控制台程序(ProFTools.exe),通过与ProF脚本配合使用实现读取/解析控制器的故障码及故障码冻结帧信息等功能。

ProFTools.exe控制台程序包含的功能函数及使用说明:

定义一个用户配置文件(config.ini),使用.INI格式包含的信息有

1、OBD和全局冻结帧的信号定义

2、所有局部冻结帧的信号定义

其中formula表示转换公式:

asc = ASCII码、bcd = BCD码 、dec = 十进制、hex = 十六进制、lin = 线性转换  

physical_value = data*factor+offset 、emun = 枚举型 

bytes表示数据长度:factor表示系数:offset:表示偏移量  unit:表示单位

* struct 表示是信号否包含独立DID索引号(1 = 包含  0 = 不包含) 

举个例子:

F4 05 表示冻结帧发动机水温信号的DID,00 是表示发动机水温信号的数值;

F4 0C 表示冻结帧发动机转速信号的DID,00 00 表示发动机转速信号数值;

上述状态表示每个冻结帧信号前都附带有独立的DID编号,struct 值应该填入1 ; 

若发动机转速与发动机水温共用一个DID编号,

F4 05 表示冻结帧发动机水温信号的DID,00 是表示发动机水温信号的数值,然后直接跟着发动机转速信号 00 00 。发动机转速信号没有独立的DID编号,换言之 F4 05 其实是个结构体数据类型后面带了多个信号数值 。上述状态下发动机转速信号 struct 值应该填入0。

总之用户配置文件的信息要确保正确,才能使故障码及冻结帧能够正确地解析。


3、故障码信息定义(故障码描述、故障码与局部冻结帧编号对应关系)

4、控制器数据DID定义,包含DID的解析方式 (其中asc = ASCII码、bcd = BCD码 、dec = 十进制、hex = 十六进制)

解决方案 - 步骤说明 

1、在INCA-ProF界面布局文件中增加"Action"下拉选项,在ProF脚本的主流程Main.prm中增加 "Action“ 对应的Calling及procedure。


2、使用ProF脚本读取控制器故障码数量(ConfirmedDTC),并保存至变量VAR_DTC_NUM

3、读取控制器故障码(ConfirmedDTC),并保存至文件(ProF仅支持二进制格式)

如图所示包括4个故障码 D404 83 2F,D406 83 2F, D403 83 2F, D506 83 2F

故障码字节含义

4、使用ProF脚本调用控制台程序ProFTools.exe,将步骤2保存“故障码”文件转换为“读故障码冻结帧”的指令集文件。ProF脚本调用外部程序函数RUN( xxx )

转换示例:故障码 D4 04 83 2F -- >读取故障码冻结帧指令  19 04  D4 04 83  FF  

5、使用ProF脚本循环读取指令集文件(循环次数由故障码数量VAR_DTC_NUM确定),每次读取6个字节的数据(指令)并发送至控制器;

GET_STRING_FILE(UDS_CMD_FILE,%r,6,0) 

ProF脚本将依次将控制器反馈的每个故障码的冻结帧数据追加保存至冻结帧数据文件。

UDS_MSG_RET_GET(0, 0, 0) 

SET_STRING_FILE(UDS_DID_FILE,0,0,1,0)

由于采取追加保存模式,因此每次循环读取前都会先使用ClearFile 删除上次保留的冻结帧数据文件。以免上次读取到的数据被叠加到本次文件内

冻结帧数据文件的格式如下所示,59 04 DTC1 DTC2 DTC3 FF DTCstatus 00 0X OBD-Snapshot 01 0X Global-Snapshot 02 0X Local-Snapshot

即一个文件中保存着控制器反馈的每个故障码的冻结帧原始数据。

6、使用ProF脚本调用Windows控制台程序ProFTools,解析故障码及冻结帧数据并保存成文本文件。RUN(PORF_TOOL_FILE, ReadDtc2Txt ...) 

可打开查看每个过程的数据文件dtc.dat, cmd.dat, snapshot.dat, snapshot.txt以及ProFTools程序运行的日志文件Logs

解决方案 - 技术细节

1、读取故障码存储文件,将故障码原始值转换成标准的故障码格式(Code categories);通过用户配置文件定义检索到故障码对应的局部冻结帧编号、故障码中文描述。

通过故障状态位判断是否为当前或历史故障码(bit0 testFailed)

故障码状态展示

2、提取冻结帧数据文件中单个故障码冻结帧的有效数据(下图中带颜色填充的部分)

技术方案:两个故障码冻结帧正反馈帧头之间即是冻结帧有效数据

59 04 DTC1   DTC1status { 有效数据 }  59 04 DTC2  DTC2status 

3、提取单个冻结帧有效数据中,OBD冻结帧、全局冻结帧、局部冻结帧信号数据,技术方案是完全根据用户配置文件中各个冻结帧信号定义索引实现。

OBD冻结帧数据的索引 = 

冻结帧帧头(6 bytes) + OBD冻结帧标识(2 bytes) + DID数据标识( struct * 2bytes ) 

全局冻结帧数据的索引 = 

OBD冻结帧数据的索引 + 全局冻结帧标识(2 bytes) + DID数据标识( struct * 2bytes ) 

全局冻结帧数据的索引 = 

OBD冻结帧数据的索引 + 全局冻结帧数据的索引+ 全局冻结帧标识(2 bytes) + DID数据标识( struct * 2bytes ) 

用户配置文件

对应冻结帧数据文件



其他

1、为何基于INCAroF脚本制作了读取/解析故障码冻结帧的工具? 

  • 市面上暂未发现有工具可以的直接读取/解析上述格式的局部冻结帧(貌似该格式是博世/联电系统独有)

  • 或许使用CANoE和VehicleSPY3更容易实现上述功能,标定工程师通常都INCA + ES581/592 打天下.. (CANoE和VehicleSPY3 贵...)


2、本文结尾处会提供扩展应用所涉及的源代码,首先说明本人不是专业码农,对于语言的使用“只求功能实现即可” ,因此代码仅供参考。读取INI文件部分代码源于github,特此说明。

3、本文只是提供了一种基于INCAroF脚本扩展应用思路,或许有更便捷的方法。

公众号后台回复“ECU015"下载《inca的prof代码源码》

推荐阅读

国内主机整车EEA架构汇总

谈谈整车控制器对油门信号处理的理解

浅谈电机控制器及其功能

谈谈电池管理系统的功能

谈谈整车控制器的功能

谈谈整车OTA系统的理解

五千字说清汽车基础软件及国产现状

带不带功能安全(IS26262)的区别,功能安全要做啥?

谈谈simulink自动代码生成

浅谈电机控制器及其功能

谈谈Bootloader自更新

电子电气架构设计需要考虑哪些方面?

汽车E/E架构的网络安全分析

深度解读汽车域控制器

自动驾驶域控制器信息梳理

深度分析整车控制域现状与发展

分享不易,恳请点个【👍】和【在看】

汽车ECU开发 专注于汽车电子ECU软件开发,技术分享。
评论
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 140浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 123浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 56浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 88浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 155浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 115浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 162浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 67浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 58浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 216浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 118浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 200浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 106浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦