电池自放电测量:静置与动态测量法!

锂电联盟会长 2022-09-29 13:33
点击左上角“锂电联盟会长”,即可关注!
锂离子电池自放电的测量方法主要分为两大1)静置测量方法通过对电池进行长时间的静置得到自放电率2)动态测量方法在动态过程中实现对电池的参数识别
静置测量法
目前主流的锂离子电池自放电测量方法是在一的环境条件下对电池进行较长时间的静置量静置前后电池参数的变化来表征锂离子电池的自放电程度根据测量参数的不同静置测量主要分为3大类容量测量开路电压测量和电流测量
1. 容量测量
在电池进行长时间静置前,对电池进行一次充放电,记录静置前的放电容量Q0。静置后采用同样的方式使电池放电,记录静置后的放电容量Q。
据式(7)可以计算得到电池的自放电率η。再对电池采用同样的方式进行一次充放电,记录循环后的电池放电容量Q1。根据式(8)和(9)可以分别计算得到电池的可逆自放电量Qrev和不可逆自放电量Qirr。该方法的示意图如图1所示。
图1 容量测量方法示意图
在国际标准化机构及各国政府相关部门和行业协会发布的电池测试手册中,对通过容量测量来检测电池自放电作了相关规定:国际电工委员会(IEC)发布的《含碱性或其他非酸性电解质的蓄电池和蓄电池组:便携式二次锂电池和蓄电池组》(IEC 61960)中规定,将处于50%SOC状态下的电池,在环境温度(20±5)℃下存储90d,再次充电后电池的放电量应不小于额定容量的85%,具体测量流程如图2a所 示。美国汽车研究委员会(USCAR)发布的电动车用电池测试手册规定,测量前应先测量与电池工作区间对应的实际电量。将电池以C/3倍率放出50%的可用电量后,在环境温度30℃下存储30d,再次充电后测量电池的放电量。中国国家标准化管理委员会发布的《电动汽车用动力蓄电池性能要求及试验方法》(GB/T 31486)与IEC标准较为相,规定了荷电保持及容量恢复能力的测量试验流程。以室温试验为例,电池在室温条件下存储8d,要求荷电保持率不低于初始容量的85%,容量恢复不低于初始容量的90%。具体测量流程如图2b所示。
图2 IEC 61960标准规定的测量流程(a)和GB/T 31486标准规定的测量流程(b)
2. 开路电压测量
开路电压测量通过直接测量电池静置过程中开路电压的变化,来表征锂离子电池的自放电程这种方法的优点是与测量容量相比较为简洁,耗时较短;缺点是对于开路电压-SOC曲线上电压平台较长的锂离子电池(如LFP电池),在很大的SOC范围内,电池电压变化较小,较难通过测量开路电压表征自放电程度,即该方法存在一定的适用范围。
3. 电流测量
对锂离子电池进行微小电流充电,以维持电池的电压保持不变,稳定时的充电电流值即为自放电电流[1-2]根据Zimmerman的研究,该微小电流可能数月内都无法稳定下来,不同设计的电池稳定时间也不尽相同,一般推荐的测量时间为至少一周[3]。
这种方法同测量开路电压的方法存在相似的问题,即对于电压平台较长的锂离子电池,该方法的有效性面临挑战。此外,由于锂离子电池的自放电电流极其微小,一般为C/50000或更低,要施加并测量这一微小量级的电流,对实验仪器的要求较高。
Sazhin等对上述常规的静置测量电流方法作了一定的改进,使用电化学工作站对电池施加一个比开路电压低的恒定电压,同时测量电路中流过的电流,不存在自放电和存在自放电的电池的电流-时间曲线如图3a所示。
图3 Sazhin电流测量方法部分实验结果
通过主动施加恒定电压,控制电池达到平衡状态并测量该过程中电路中流过的电流,可以缩短测量时间。此外,电流为零的跨越点(CZCP) 也可以作为表征自放电率的参数,如图3b所示,电流Isc达到零点的时间tCZCP的对数与自放电电阻Rself的对数成正相关关系。
但是,该方法也存在一个较为严重的缺点,即对实验设备的精度要求较高。实验所用的电化学工作站电压分辨率为100uV(14.5V量程下),电流分辨率为1pA(200nA量程)。
综合来看,以上3种方法都非常耗时,实验时间跨度从一天至数十天不等,电流测量场景下测量时间的缩短需要高昂的设备成本。
动态测量法
动态测量方法,即在动态过程中实现对电池的参数识别为了缩短测量时间、节省空间资源和人力资源,研究人员也作了很多尝试。一种方法是通过改变环境温度和电池的SOC等条件来加快自放电速率,使测量参数可以在较短的时间内有相对较大的变化。这种方法虽然节约了实验时间,但同时也加快了电池的老化,增加了对电池的损伤,只适用于实验室研究,不适合在实际生产中大规模应用。另外一种方法则是在现有较为成熟的锂离子电池等效电路模型的基础上,引入自放电电阻,通过不同的参数识别手段,在动态过程中测量锂离子电池的自放电率。
李革臣等[4-5]利用自动化系统辨识理论,将锂离子电池简化为一阶电阻-电容(R-C)等效电路,对锂离子电池和等效电路施加相同的充放电电流,根据输出电压的差异调整等效电路的参数,直到二者差异趋近于零,就得到了锂离子电池自放电电阻值。这种方法需要的总测量时间约为12h。但是,该方法将电池等效为一个无源电路,未考虑在实验过程中电池荷电状态变化对输出电压产生的影响。
Schmidt等[6]将电池简化为如图4所示的等效电路。其中:Rp,i为电化学反应电阻,Cp,i为双电层电容,Rself为自放电电阻,C为电池等效电容。通过对锂离子电池施加短时间的电流脉冲,测量随后静置过程中的电压变化,进一步解析得到自放电电阻值。该方法仅考虑静置时每一阶段起主导作用的反应,将复杂的反应机理解耦,在减少计算量的同时也缩短了测量时间。
图4 文[6]所用锂离子电池等效电路
具体来讲,静置初期起主导作用的是过电压的恢复,静置末期电池的自放电才起主导作用。可通过静置末期的数据分析自放电的时间常数,再补偿过电压恢复期自放电导致的电压降,求解电池等效电容,最终得到自放电电阻值。该方法可以在10~48h内得到锂离子电池的自放电电阻,与传统方法相比节省很多时间,但为观察到自放电起主导作用的阶段,仍需消耗大量静置时间。
Ouyang等[7]将电池内短路的影响分为两大类,分别是参数效应和消耗效应。其中:参数效应是指由于短路电阻的存在,导致测量的开路电压和内阻相对真实值有一定偏差;消耗效应是指由于短路电阻的存在,电池内部存储的能量不断被消耗,电池SOC不断下降,这将导致电池开路电压和内阻的真实值相对正常值产生一定的偏差。
式(10)和(11)所示的电池差异模型中:Ei为电池开路电压,Ri为电池内阻,Ui和I分别为测得的电池电压及电流。利用递归最小二乘方法求得ΔEi和ΔRi的值,最后通过统计学方法识别超出阈值的异常参数,从而判断电池是否出现内短路。在短路电阻为100Ω时,该方法最快可在4h43min内实现内短路的辨识。

以上3种动态测量方法,通过引入等效电路等手段将锂离子电池进行简化,并采用了创新性的实验方法解析出自放电电阻值,在缩短测量时间方面取得了较大的进展。

总结
综述了静态测量和动态测量两类锂离子电池自放电率的测量方法,得出的主要结论包括以下3点:
1、发生在负极/电解液和正极/电解液界面的副反应是锂离子电池自放电的主要来源,可以通过对正极表面进行改性,在负极、电解液中加入添加剂等手段,抑制自放电的发生。
2在电池的存储过程中,应尽量避免处于过高或过低的SOC状态,并且环境温度和湿度应保持在一个相对较低的范围内。
3目前主流的自放电测量方法是以长时间静置实验为基础的静态测量。该类方法的最大问题是测量时间过长,造成空间和人力资源的巨大浪费。研究人员提出了一些结合等效电路模型进行参数辨识的动态测量方法,这些方法在缩短测量时间方面取得了一定的进展。通过创新性实验设计,在动态过程中完成对自放电的解耦识别,是未来实现自放电快速测量的关键路径和发展方向。
参考:裴普成, 陈嘉瑶, 吴子尧. 锂离子电池自放电机理及测量方法[J]. 清华大学学报:自然科学版, 2019, 59(1):13.
[1]刘双全锂电池自放电检测技术的研究与应用[D]哈尔滨哈尔滨理工大学2014.
[2]徐雄文,武红波,倪漫利.一种电池自放电检测方法及装置:CN106054086A[P].2016-10-26
[3] Zimmerman A H . Self-discharge losses in lithium-ion cells[J]. IEEE Aerospace & Electronic Systems Magazine, 2004, 19(2):19-24.
[4]李革臣赵旭杨琳动力电池自放电测量新技术原理与应用[J]新材料产业2012(9):75-78
[5]李然锂动力电池健康度评价与估算方法的研究[D]哈尔哈尔滨理工大学2016.
[6]Schmidt J P ,  Weber A , E Ivers-Tiffée. A novel and fast method of characterizing the self-discharge behavior of lithium-ion cells using a pulse-measurement technique[J]. Journal of Power Sources, 2015.
[7] Ouyang M ,  Zhang M ,  Feng X , et al. Internal short circuit detection for battery pack using equivalent parameter and consistency method[J]. Journal of Power Sources, 2015, 294(oct.30):272-283.


锂电联盟会长 研发材料,应用科技
评论
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 43浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 60浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 82浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 51浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 60浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 84浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 55浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 54浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 107浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 93浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 67浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 53浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 111浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦