如何高效入手STM32H7?整体把控一下框架

李肖遥 2022-09-28 22:01
    关注、星标公众号,直达精彩内容

素材来源:https://www.cnblogs.com/armfly/p/10678069.html


初学STM32H7一定要优先整体把控芯片的框架,不要急于了解单个外设的功能。

1   初学者重要提示

  1. 学习一款新的芯片,优先掌握系统框架是比较重要的,建议逐渐养成这种学习习惯,然后各个击破即可。

  2. 本章节提供了多张STM32H7的框图,这些框图都非常具有代表性。很多时候记忆知识点比较费脑子,记录这些框图是一种非常好的方式。

  3. 对于本章节提供的部分知识点,无法理解透彻,暂时没有关系。随着后面的深入学习,基本都可以掌握。

  4. 重要的MPU和Cache知识分别放在了第23章和第24章。

2   STM32H7硬件框图

学习一款新的芯片,需要优先了解一下它的整体功能设计。需要的资料主要是来自官网和数据手册,比如我们V7开发板使用的STM32H743XIH6,直接在官方地址:链接(这是超链接)就可以看到对此芯片所做的介绍,页面中有一个如下的框图,对于了解STM32H7整体设计非常方便。

 

再稍微详细点,就需要大家读页面上的”Key Features”,就是下图所示的内容:

 

或者直接看数据手册开头的章节即可,也进行了介绍,内容基本都是差不多的,如下图所示(部分截图):

 

通过框图和Key Features,大家可以方便地了解STM32H7的FLASH、RAM大小以及各种自带外设的信息。

3   STM32H7各个型号的区别

涉及到芯片选型的时候,需要大家了解各个型号的区别。对此ST有一个专门的文件STM32H7x3 MCUs High-performance line,在链接(这是一个超链接)里面可以找到。此文件里面有简单的对比,只是内容比较简单,仅两页,不过也言简意赅。最主要的是下面的这个截图:

 

通过这个截图可以方便地了解不同型号的引脚数、封装、FLASH大小、RAM大小以及是否带HW CRYPTO硬件加密的区别。

需要了解更详细的对比信息,可以看数据手册。任意下载一个型号的数据手册,在数据手册的的Table 2里面有详细的对比,如下图所示(部分截图):

 

使用ST提供的软件STMCUFinder或者STM32CubeMX也可以做对比,只是没有上面的表格这么方便,可以一目了然。

4   STM32H7总线框图和时钟

STM32H7的数据手册里面提供了一张非常棒的框图,大家可以方便地查看每个总线的时钟速度和这个总线所挂的外设。这个在大家配置外设时钟分频的时候还是非常有用的,因为外设的时钟分频就是建立在所挂的总线速度

 

比如我们想得到不同定时器的主频,通过上面的框图,可以方便地获得如下信息:

SYSCLK(Hz)                     = 400000000 (CPU Clock)

HCLK(Hz)                       = 200000000 (AXI and AHBs Clock)

AHB Prescaler                  = 2

D1 APB3 Prescaler              = 2 (APB3 Clock  100MHz)

D2 APB1 Prescaler              = 2 (APB1 Clock  100MHz)

D2 APB2 Prescaler              = 2 (APB2 Clock  100MHz)

D3 APB4 Prescaler              = 2 (APB4 Clock  100MHz)

 

因为APB1 prescaler != 1, 所以 APB1上的TIMxCLK = APB1 x 2 = 200MHz;

因为APB2 prescaler != 1, 所以 APB2上的TIMxCLK = APB2 x 2 = 200MHz;

APB4上面的TIMxCLK没有分频,所以就是100MHz;

 

APB1 定时器有 TIM2, TIM3 ,TIM4, TIM5, TIM6, TIM7, TIM12, TIM13, TIM14,LPTIM1

APB2 定时器有 TIM1, TIM8 , TIM15, TIM16,TIM17

APB4 定时器有 LPTIM2,LPTIM3,LPTIM4,LPTIM5

5   STM32H7的AXI总线

AXI总线在STM32H7中有着举足轻重的作用。高并发性全靠这个总线了,先来看下AXI总线的框架:

5.1      总线系统框架

下面这个截图比较有代表性,可以帮助大家理解STM32H7总线系统。

 

这个图可以方便识别总线所外挂的外设,共分为三个域:D1 Domain,D2 Domain和D3 Domain。

D1 Domain

D1域中的各个外设是挂在64位AXI总线组成6*7的矩阵上。

  • 6个从接口端ASIB1到ASIB6

外接的主控是LTDC,DMA2D,MDMA,SDMMC1,AXIM和D2-to-D1 AHB 总线。

  • 7个主接口端AMIB1到AMIB7

外接的从设备是AHB3总线,Flash A,Flash B,FMC总线,QSPI和AXI SRAM。另外AHB3也是由AXI总线分支出来的,然后再由AHB3分支出APB3总线。

D2 Domain

D2域的各个外设是挂在32位AHB总线组成10*9的矩阵上。

  • 10个从接口

外接的主控是D1-to-D2 AHB 总线,AHBP总线,DMA1,DMA2,Ethernet MAC,SDMMC2,USB HS1和USB HS2。

  • 9个主接口

外接的从设备是SRAM1,SRMA2,SRAM3,AHB1,AHB2,APB2,APB3,D2-to-D1 AHB总线和D2-to-D3 AHB总线。

D3 Domain

D3域的各个外设是挂在32位AHB总线组成3*2的矩阵上。

  • 3个从接口

外接的主控D1-to-D3 AHB总线,D2-to-D3 AHB总线和BDMA。

  • 2个主接口

外接的从设备是AHB4,SRAM4和Bckp SRAM。另外AHB4也是这个总线矩阵分支出来的,然后再由AHB4分支出APB4总线。

 

这三个域之间也是有互联的,可以是:

  • D1域到D2域的D1-to-D2 AHB bus

允许D1域中的主接口外设访问D2域里面的从接口外设。比如D1域里面的DMA2D访问D2域里面的SRAM1。

  • D2域到D1域的D2-to-D1 AHB bus

允许D2域中的主接口外设访问D1域里面的从接口外设。比如D2域里面的DMA2访问D1域里面的AXI SRAM。

  • D1域到D3域的D1-to-D3 AHB bus

允许D1域中的主接口外设访问D3域里面的从接口外设。比如D1域里面的DMA2D访问D3域里面的SRAM4。

  • D2域到D3域的D2-to-D3 AHB bus。

允许D1域中的主接口外设访问D2域里面的从接口外设。比如D2域里面的DMA2访问D3域里面的SRAM4。

 

有了这些知识后,下面我们重点了解AXI总线矩阵。

5.2      AXI总线特色

AXI支持高频率、高性能的系统设计:

  • 支持高带宽,低延迟设计。

  • 提供高频操作,无需复杂的总线桥。

  • 满足各种组件的接口需求。

  • 适用于具有高初始访问延迟的内存控制器。

  • 为互连架构的实现提供了灵活性。

  • 与现有的AHB和APB接口向后兼容。

 

AXI总线的关键特性:

  • 独立的地址、控制和数据线。

  • 支持非字节对齐方式传输。

  • 基于起始地址的突发传输。

  • 分开的读和写数据通道,且提供DMA传输。

  • 支持发起多个地址。

  • 支持无序传输。

  • 允许添加寄存器,以提供时序收敛。

5.3      AXI总线简介

通过下面的框图,我们再进一步的认识一下AXI总线。

 

通过上面的截图,我们可以看到,AXI总线有6个从接口ASIBs(AMBA slave interface blocks)和7个主控接口AMIBs(AMBA master interface blocks)。

针对从接口ASIBs,描述如下:

 

重点注意最后一列,STM32H7参考手册里面原始的描述是R/W issuing,这里将其翻译为读/写发起能力。比如输入通道IN5连接的主控DMA2D,支持的读发起能力是2,写发起能力是1。读发起能力是2该如何理解呢?这里的含义是存在两路读信号同时进行(因为AXI接口有一个FIFO的功能,可供同时进行,更深入的认识有待研究),反映到DMA2D的实际应用中,就是DMA2D同时读取前景色和背景色的缓存区做Alpha融合之类的操作。写操作同理,DMA2D的写发起能力仅支持一路。

针对主控接口AMIBs,描述如下:

 

跟上面表格的含义是一样的,同样重点注意最后一列,这里多了一个总接收能力(Total acceptance),也就是读发起能力和写发起能力同时执行的情况。

5.4      AXI总线优先级编程

由于存在多个ASIB从接口访问AMIB主控的问题,这就涉及到谁先谁后等问题。所以AXI总线矩阵就做了一个基于优先级的仲裁方案。每个ASIB接口支持读通道和写通道分别设置,优先级从0到15。数值越大,优先级越高,默认情况都是优先级0。如果有两个传输同时到达AMIB主控接口,那么优先级高的ASIB接口传输优先处理;如果优先级相同的话,根据LUR方案选择(least recently-used最近最少使用情况)。

大家在实际应用中,可以根据实际情况进行设置,一般情况下使用默认值即可。

6   STM32H7的总线互联

STM32H7的总线矩阵四通八达,但不是任意Bus Master总线主控端和Bus Slave设备端都可以相互通信的:

 

黑色加粗字体是64位总线(ITCM,DTCM,Flash A,Flash,AXI SRAM,FMC等),普通字体是32位总线。

访问通路(每个小方块里面的字符)

    任何有数字的表示有访问通路。

    短横杠“-”表示不可访问。

    有灰色阴影的表示有实用价值的访问通路。

表格中具体数值所代表的含义

    D=direct

    1=via AXI bus matrix

    2=via AHB bus matrix in D2

    3=via AHB bus matrix in D3

    4=via AHB/APB bridge in D1

    5=via AHB/APB bridge in D2

    6=via AHB/APB bridge in D3

    7=via AHBS bus of Cortex-M7

    多个数值组合 = 互连路径以数字的顺序经过多个矩阵或/和桥。

总线访问类型

普通字体表示32位总线。

斜体表示32位总线主机端/ 64位总线从机端。

粗体表示64位总线。

当前要对这个图有个了解,后面章节讲解各个外设的时候要用到,比如DTCM和ITCM不支持DMA1,DMA2和BDMA,仅支持MDMA。

7   STM32H7的FLASH

首次学习STM32H7,要掌握以下几点认识即可:

1、双BANK,每个BANK的带宽都是64bits,如下图所示:

 

2、H7中Flash的延迟和主频关系。

H7中已经没有F1和F4系列中的ART Chrome加速,通过H7中的Cache加速即可。具体延迟数值和主频关系如下:

 

对于上面的表格,大家可以看到,当延迟等待设置为0的时候,即无等待,单周期访问,速度可以做到70MHz。增加1个Flash周期后,访问速度可以做到140MHz。当增加到3个或4个Flash周期后,最高速度可以做到225MHz。

3、Flash编程操作(写)最好以256bits为单位进行,应用中也可以小于256bits,但是容易造成ECC校验出问题,所以不推荐。Flash读操作支持64bits,32bits,16bits和8bits。

4、Flash支持ECC校验,每256bits配10bit的ECC位,可以检测到1个bit并纠正或者检测2个bit。随着芯片的制造工艺水平越高,带电粒子能产生的位翻转就越多,此时的ECC是必须要有的,一般可以纠正1-2个bit。安全等级高的Flash类存储器和RAM类都是必须要带ECC的。

8   STM32H7的RAM

STM32H7的RAM区分为好几个部分,下面分别进行说明:

 TCM区

TCM : Tightly-Coupled Memory 紧密耦合内存 。ITCM用于运行指令,也就是程序代码,DTCM用于数据存取,特点是跟内核速度一样,而片上RAM的速度基本都达不到这个速度,所以有降频处理。

速度:400MHz。

DTCM地址:0x2000 0000,大小128KB。

ITCM地址:0x0000 0000,大小64KB。

 AXI SRAM区

位于D1域,数据带宽是64bit,挂在AXI总线上。除了D3域中的BDMB主控不能访问,其它都可以访问此RAM区。

速度:200MHz。

地址:0x2400 0000,大小512KB。

用途:用途不限,可以用于用户应用数据存储或者LCD显存。

 SRAM1,SRAM2和SRAM3区

位于D2域,数据带宽是32bit,挂在AHB总线上。除了D3域中的BDMB主控不能访问这三块SRAM,其它都可以访问这几个RAM区。

速度:200MHz。

SRAM1:地址0x3000 0000,大小128KB,用途不限,可用于D2域中的DMA缓冲,也可以当D1域断电后用于运行程序代码。

SRAM2:地址0x3002 0000,大小128KB,用途不限,可用于D2域中的DMA缓冲,也可以用于用户数据存取。

SRAM3:地址0x3004 0000,大小32KB,用途不限,主要用于以太网和USB的缓冲。

 SRAM4区

位于D3域,数据带宽是32bit,挂在AHB总线上,大部分主控都能访这块SRAM区。

速度:200MHz。

地址:0x3800 0000,大小64KB。

用途:用途不限,可以用于D3域中的DMA缓冲,也可以当D1和D2域进入DStandby待机方式后,继续保存用户数据。

 Backup SRAM区

备份RAM区,位于D3域,数据带宽是32bit,挂在AHB总线上,大部分主控都能访问这块SRAM区。

速度:200MHz。

地址:0x3880 0000,大小4KB。

用途:用途不限,主要用于系统进入低功耗模式后,继续保存数据(Vbat引脚外接电池)。

9   总结

本章节就为大家讲解这么多,让大家对STM32H7有个整体的认识,后面章节将逐个进行学习。

版权声明:本文来源网络,免费传达知识,版权归原作者所有。如涉及作品版权问题,请联系我进行删除。

‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧  END  ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

关注我的微信公众号,回复“加群”按规则加入技术交流群。


点击“阅读原文”查看更多分享,欢迎点分享、收藏、点赞、在看。

李肖遥 公众号“技术让梦想更伟大”,作者:李肖遥,专注嵌入式,只推荐适合你的博文,干货,技术心得,与君共勉。
评论
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 90浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 110浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 89浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 74浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 102浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 91浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 71浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 50浏览
  •         在有电流流过的导线周围会感生出磁场,再用霍尔器件检测由电流感生的磁场,即可测出产生这个磁场的电流的量值。由此就可以构成霍尔电流、电压传感器。因为霍尔器件的输出电压与加在它上面的磁感应强度以及流过其中的工作电流的乘积成比例,是一个具有乘法器功能的器件,并且可与各种逻辑电路直接接口,还可以直接驱动各种性质的负载。因为霍尔器件的应用原理简单,信号处理方便,器件本身又具有一系列的du特优点,所以在变频器中也发挥了非常重要的作用。  &nb
    锦正茂科技 2024-12-10 12:57 76浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 146浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 88浏览
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 19浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 53浏览
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 10浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 9浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦