内存的技术发展-《内存的故事》续

金捷幡 2020-05-04 00:00

《内存的故事》主要是三年前写的。趁这个假期写一个短续,枯燥地鸟瞰一下这几年内存行业的一些近况。


一、内存领域的现阶段问题是什么


内存是个不太好的俗称,其主要用途是两个:作为程序运行的空间(DRAM等)和存储数据的空间(NAND等)。


NAND进入3D时代以后,基本上容量就没有天花板了,所以这个我们放到最后再说。


现阶段的主要问题是DRAM:单位价格的容量增长缓慢和速度跟不上CPU。这个问题在商用领域特别明显,比如数据中心、高性能计算和运营商网络等。


此外DRAM能耗过高,因为它要在每个时钟周期给小电容们重新充电。


电费是商业用户的成本大头。在移动设备上,DRAM也是电池的死敌。


历史上DRAM为了增加带宽只能不断增加延时,那么把缓存加大如何呢?问题是,SRAM和CPU你中有我一样贵,而且六个晶体管才能存一个比特。Intel至强处理器的Cache,也只有DRAM的千分之一。


宇宙无敌的IBM Power 9 CPU配24个核也就120MB L3,代价是它的die size近700mm2,是苹果A13处理器的七倍!


(Power9中L2/L3占这么大面积才100多M)


内存行业的主要核心问题是日益增长的容量速度功耗需求和DRAM的技术瓶颈无法匹配。


二、DDR5


由于DRAM本身的局限性,它的技术进步一直很痛苦。DDR3到DDR4的小进步花了五年;DDR4从2012年发布第一版到今天DDR5还没有发布(注:显存GDDR5只是DDR3的变种)。


DRAM标准由JEDEC JC-42工作组制订。虽然有投票机制,但DRAM的节奏其实一直由英特尔主导。


原因很简单,英特尔确定PC路线图:CPU或北桥芯片决定什么时间支持新标准内存。


得益于半导体工艺的进步,DDR5的核心电压从DDR4的1.2V下降到1.1V,这有望节省20%的功耗。


(DDR5可以使系统通道数再翻倍。图:Mircon)



DDR5的Burst Length和Prefetch (预读取)从DDR4的8n增加到16n,这样在时钟频率不变的情况下带宽翻倍。为了控制高速带来的各种信号干扰和抖动问题,DDR5还引入了核心时钟的各种优化调整。新的On-die ECC功能也是对服务器的大利好。


但这些这也将带来更多的设计、测试和兼容挑战,需要CPU(含内存控制器)的很大改动,从目前看大概要等到2022年。


三、LPDDR5


低功耗LPDDR5单独拿出来因为从LPDDR4开始已经和标准DDR分道扬镳了。


虽然LPDDR5和DDR5使用的新技术很多是共通的,但着眼点有很大不同。LPDDR5是功耗第一速度第二,而DDR5追求速度第一功耗第二。


因为LPDDR4已经是16n预读取,LPDDR5主要靠Bank group访问实现速度提升。它追求的是超低功耗,所以供电电压和核心电压比DDR5都更低。


x86领域的技术进步被英特尔带慢了节奏,但在手机领域则不同。


激烈的竞争和每年一次的旗舰产品发布使得各家不断比拼最新的技术。



LPDDR5就是个例子。



小米10率先使用LPDDR5确实是个big thing,这显示了高通激进的产品策略。一加8和三星S20的跟进基本上定了今年高端的调子。


华为则面临比较尴尬的处境,因为美商Micron是目前LPDDR5的主要供应商。三星估计优先供应自己,而Hynix似乎在标准DDR5更用心。在LPDDR5供应困难的情况下,华为要不要在下一代麒麟提供支持,从产品规划上是个两难。


三、HBM


对于迫切需要高带宽的应用,比如游戏和高性能计算,高带宽内存(HBM)则是绕过DRAM传统IO增强模式演进的优秀方案。


(图:AMD)


HBM直接和处理器封装的方式不再受限于芯片引脚,突破了IO带宽的瓶颈。另外DRAM和CPU/GPU物理位置的接近使得速度进一步提升。


在尺寸上,HBM也使整个系统的设计大大缩小成为可能。


在目前,HBM2在很大程度上是GDDR6的竞争对手。不过根据最新消息,Xbox Series X和索尼PS5仍旧选择了GDDR6,也许因为HBM2高昂的成本吧。


不过从长远看,DRAM仍有很强的3D化需求。因为2D在制造上(昂贵的10nm瓶颈)接近天花板。


四、NVDIMM


现在云计算虚拟机和各种内存数据库大行其道,服务器对大容量内存非常饥渴。但是由于DRAM成本很难进一步降低,如何低成本配置高容量内存变成一个难题。


混搭的NVDIMM被提了出来。


NVDIMM-F是直接用NAND颗粒替代DRAM做成内存条,好处是极其便宜,但它速度太慢而且并不能突破系统对DRAM总容量的访问限制。


NVDIMM-N是在内存条上加上NAND做DRAM的镜像存储,防止服务器意外断电丢失内存数据。但NAND并不能扩容内存而且占了一些通道带宽。


JEDEC NVDIMM-N示意图


最终的方案是NVDIMM-P,它允许巨大的容量比如1T内存,并允许用各种新式芯片比如NAND、RRAM、MRAM等替代DRAM。


目前还没有看到JEDEC NVDIMM-P的标准出来。但英特尔已经发布了3D-Xpoint为基础的Optane DIMM,自己平台支持自己是个巨大的优势,也是给竞争对手的一个大门槛。


五、3D-Xpoint和其它NV内存


3D-Xpoint是很有意思一个话题,号称速度比NAND快1000倍。


英特尔和Micron对3D-Xpoint的技术原理一直讳莫如深,甚至一丁点都不透露。开始有人猜它是3D NOR,后来大家认为它是相变内存(PCM)或RRAM。


市面上也没有看到有人剥开这颗芯片分析内部。


直到一个案卷中,让我们看到当代爱迪生Stanford Ovshinsky是其发明人。清算公司认为英特尔和Micron在Ovshinsky去世后公司破产处理中隐瞒了关键信息。


Micron分家后,英特尔的3D-Xpoint将转到大连厂独家生产,不知道未来是否能有更多的小道消息。


3D-Xpoint技术在服务器领域增长潜力很大,但如何降低制造成本是关键。


MRAM、FRAM等其它NV类内存则在物联网、汽车和工业等领域寻找机会。


MRAM的工艺和传统MOS半导体工艺类似,这有助于其扩大生产而降低成本,最终有机会在一些嵌入式应用取代部分NOR、SRAM或DRAM。


那么速度更快的PCM和RRAM是否能取代NAND呢?似乎短期不会实现,因为存储数据的速度要求一般没那么高,而3D NAND的低成本容量暴增实在是太成功了。


(旧图:对比不同内存的成本和速度)


五、3D NAND


对于3D NAND来讲,单个cell缩小变得没有意义,因此不再需要最尖端的半导体制程技术。Hynix最近说,3D NAND未来可以叠800层。



盖楼过程光刻环节减少了,而沉积和蚀刻等工序大大增加,蚀刻之王泛林成为最大赢家。



这导致的另一个影响是DRAM和NAND的产线和产能不再能灵活互补。


蚀刻下图这种楼梯达百层和以及蚀刻长孔是有挑战性的。楼梯是连接位线的,长孔则是著名的充电陷阱(Charge Trap)。



记得英飞凌/奇梦达是最早用以色列Saifun公司技术量产Charge Trap闪存的。但当时技术不成熟,擦写寿命只有Floating Gate的1/10。Jim Handy说Charge Trap蚀刻孔的工艺来源自Trench技术。


在《内存的故事》里提到过当初IBM、英飞凌、东芝和AMD是早期半导体技术结盟的,后来奇梦达用Trench独战群雄最后败北。但Charge Trap蚀刻技术倒是延续了下来:AMD的后代Spansion把它用在了NOR Flash上,而东芝则做出领先的BiCS 3D NAND。


现在坚守Floating Gate的只剩英特尔一家了。我的理解是FG每层都需要光刻,这样的工艺复杂度会导致其失去竞争力,退出市场可能是难以避免的。


前些天看长江存储发布的128层Xtacking技术很有意思,它把存储阵列和控制电路分开。这样可以大大降低开发和革新周期,但对量产挑战不小。看到的具体技术细节不多,如果是wafer-to-wafer bonding,即使不考虑bonding良率,成品良率是两片晶圆良率相乘的关系。


3D NAND的延续和DDR5标准的难产则对于目前正在起步的中国内存业则是个非常好的追赶良机。


很高兴看到长鑫存储已经开始量产主流的DDR4,而其在知识产权和专利上的远见布局也令人赞叹。


脚踏实地和志存高远大概是内存行业的不二法门吧。


参考阅读:

《内存的故事》

《内存的故事》-Rambus

《内存的故事》-金士顿

金捷幡 只写原创,争取每篇文章学习一个新角度。
评论
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 101浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 50浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 78浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 108浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 84浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 119浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 122浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 98浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 120浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 71浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 100浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 106浏览
我要评论
1
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦