温温故,知知新 | 开关转换器动态分析采用快速分析技术 第二篇(文末有奖)

安森美半导体 2020-05-02 00:00


点击上方蓝字关注我们





周六锁定“温温故,知知新”,获取我司技术知识速递——您发挥才能,我们提供工具!别忘了参与文末有奖活动哦!

本篇文章节选自国际知名电源专家Christophe Basso所著的《开关转换器动态分析采用快速分析技术》。本篇文章是此次系列文章的第二篇,此次系列文章共有三篇,第三篇将于下周六发布,欢迎大家持续关注~




开关转换器动态分析采用快速分析技术(第二篇)



作者简介

Christophe Basso


安森美半导体法国图卢兹 Technical Fellow


他拥有超过20年的电子电路设计经验,在电力电子转换领域拥有近30项专利,他原创了许多集成电路芯片,其中代表性为 NCP120X 系列,它重新定义了电源低待机功耗设标准。


Christophe Basso出版了多部著作,《开关模式 SPICE 仿真和实用设计》深受广大工程师的欢迎并二次改版,《为线性和开关电源设计控制回路:教程指南》为工程师设计补偿和环路稳定性提供了实用指南,《线性电路传递函数:介绍快速分析技术》以说教的方式,为学生和需要强大的工具以快速分析日常工作中的复杂电子电路的工程师提供对电路分析的不同角度。



文章链接
如果您还未阅读本系列文章的第一篇,点击下方链接即可跳转阅览

开关转换器动态分析采用快速分析技术 第一篇


03

工作于DCM的带耦合电感的SEPIC

SEPIC是一种流行的结构,常用于输出电压必须小于或大于输入的应用,不会像采用Buck-Boost转换器那样损失极性。SEPIC可采用耦合或非耦合电感工作在连续导通模式(CCM)或非连续导通模式(DCM)。[9]中谈讨了耦合电感的好处,这里不作讨论。


我们的兴趣在于确定耦合电感的SEPIC 在工作于DCM时的输出到控制的传递函数。图11代表[10]中所述的自动切换电压控制模式的PWM开关和采用一个SEPIC配置的连接。特意减少载荷以强制实施DCM。在启动序列完成后施加一个临时步骤。在类似的工作条件下捕获并仿真一个逐周期电路。


图十一

点击查看大图 △


翻译参考▽

Cycle-by-cycle simulation:逐周期仿真

Average model:平均模型


图11:第一个SEPIC采用平均模型,而右边第二个实施逐周期法。


运行一个仿真来比较两个电路的输出响应。如图12所示,两个电路的响应非常相近。曲线的左边描述了启动序列,右边部分显示了两个模型对负载阶跃的响应。在这一阶段具有相同的响应第一次表明平均大信号模型正确地仿真SEPIC内部,我们可进行小信号版本。

DCM PWM开关的大信号模型由(10)中推导出的小信号版本所代替,与[5]中描述的不同。两个模型得出了相同的分析,但Vorpérian博士在[5]中考虑的是一个常见的配置(C端是接地的),而我为了建立一个自动切换的DCM-CCM模型,保留了原普通无源配置。采用DCM PWM开关的小信号模型更新的电路图如图13所示。右边的参数列表计算分析所需的所有系数k。


图十二

点击查看大图 △


图12:平均模型与逐周期模型的瞬态响应完全符合。


图十三

点击查看大图 △


翻译参考▽

Parameters:参数


图13:这是工作在DCM模式的SEPIC的小信号模型。节点d1是占空比偏差和注入点。所有小信号系数都自动出现在参数窗口。



04

确定准静态增益

为了确定准静态增益,您需要照图2使所有电感短路,所有电容开路。这正是SPICE在计算工作偏置点时所做的工作。然后重新排列所有的源和组件以简化电路,使其更易于分析。


当您做这工作时,我建议您始终运行一个全面的检查,确定新电路的动态响应与图13完美匹配。任何偏差都表明您出了错,或者简化中的假设过于乐观:重复该做法直到幅值和相位完美匹配为止。组合出图14的电路。


图十四

点击查看大图 △


图14:这是用来确定准静态增益H0的最终的直流电路。


几行代数将使我们得到输出电压表达式:

(20)

(21)

将(20)中的Ic代入(21)并求解Vout。您应该得出

(22)

该小信号准静态增益简单地表示为

(22)



05

时间常数的确定

我们将采用FACTs并单独确定电路的时间常数,而不是用图13的完整原理立刻求解整个传递函数。这种方法提供了一个优势,以处理您通过对单个草图的SPICE仿真获得的结果。这大大有助于逐步前进和跟踪错误,而不至于在大量的工作时间后才发现最终的结果是错误的!


为了确定时间常数,将激励源减为0(请检查图2)。在此,由于我们想要控制到输出的传递函数,激励源是d1。将其减为0有助于简化电路,如图15所示。


图十五

点击查看大图 △


图15:将激励源减为0有助于简化电路。在此我们从驱动电感L1的阻抗开始。


我们可以用几个公式来描述这个电路,我们知道IC=IT:

(24)

(25)

(26)

(27)

您将(26)代入(27)然后解出V(c)。替代(26)中的V(c)解得V(a)。然后可写:

(28)

如果您重新排列和由图13的定义替换系数k,得出时间常数t1的定义:

(29)


二阶时间次常数指的是从C2端看到的阻抗,而L1是短路的。新的电路如图16所示。由于L1短路,a和c端在一起,简化更新的电路为右边的图片。


图十六

点击查看大图 △


图16:使电感短路真正简化电路。


再一次,几个简单的方程会很快地让您得出结果:

(30)

将(30)代入(31),然后解得VT并重新整理。您应该发现:

(31)

如果您知道试图确定涉及C3的三阶时间常数,变压器配置(完美耦合)使其两端电压等于0V:在动态传递函数中电容器不起作用。因此第一个系数b1定义为

(32)


未完待续,下周六见...



References
参考文献

1. R. D. Middlebrook, Methods of Design-Oriented Analysis: Low-Entropy Expressions, Frontiers in Education Conference, Twenty-First Annual conference,  Santa-Barbara, 1992.

2. R. D. Middlebrook, Null Double Injection and the Extra Element Theorem, IEEE Transactions on Education, Vol. 32, NO. 3, August 1989.

3. V. Vorpérian, Fast Analytical Techniques for Electrical and Electronic Circuits, Cambridge University Press, 2002.

4. C. Basso, Linear Circuit Transfer Functions – An Introduction to Fast Analytical Techniques, Wiley,  2016.

5. V. Vorpérian, Simplified Analysis of PWM Converters Using the Model of the PWM Switch, Parts I and II, Transactions on Aerospace and Electronics Systems, vol. 26, no. 3, May 1990.

6. D. Feucht, Design-Oriented Circuit Dynamics, http://www.edn.com/electronics-blogs/outside-the-box-/4404226/Design-oriented-circuit-dynamics

7. D. Peter, We Can do Better: A Proven, Intuitive, Efficient and Practical Design-Oriented Circuit Analysis Paradigm is Available, so why aren't we using it to teach our Students?,

http://www.icee.usm.edu/ICEE/conferences/asee2007/papers/1362_WE_CAN_DO_BETTER__A_PROVEN__INTUITIVE__E.pdf

8. C. Basso, Fast Analytical Techniques at Work with Small-Signal Modeling, APEC Professional Seminar, Long Beach (CA), 2016, http://cbasso.pagesperso-orange.fr/Spice.htm

9. J. Betten, Benefits of a  coupled-inductor SEPIC, slyt411, application note, Texas-Instruments.

10. C. Basso, Switch-Mode Power Supplies: SPICE Simulation and Practical Designs, McGraw-Hill, 2nd edition, 2014.

11. D. Maksimovic, R. Erickson, Advances in Averaged Switch Modeling and Simulation, Power Electronic Specialist Conference Professional Seminar, Charleston, 1999













(向上滑动开启信封)

参与阅读有奖活动:


如果粉丝朋友们喜欢我司的技术文章,欢迎大家分享。参与本次阅读有奖活动,仅需点击阅读原文正确填写问卷,即可获得抽奖资格哦。











活动流程
我们将从参与活动的粉丝中,随机抽取 8位,赠送 8G四合一手机U盘。欢迎大家热情参与!

本次的阅读有奖活动,将在5月15日公布获奖名单。



活动时间
4月25日至5月11日



活动规则
活动期间,每个ID只有一次参加机会
奖品内容以最后收到的包裹为准
请如实填写信息,信息将用于寄送奖品
奖品将由快递寄送给获奖者

*本次活动由Archetype举办,最终解释权归Archetype所有
活动参与者将被默认为该参与者同意所提供的信息将根据安森美半导体隐私政策条款使用
安森美半导体及Archetype的员工、代理商/承包商/分包商的员工均没有参与此活动的资格



点击阅读原文,参与活动
安森美半导体 安森美(onsemi, 纳斯达克股票代码:ON)专注于汽车和工业终端市场,包括汽车功能电子化和安全、可持续能源网、工业自动化以及5G和云基础设施等。以高度差异化的创新产品组合,创造智能电源和感知技术,解决最复杂的挑战,帮助建设更美好的未来。
评论 (0)
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 97浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 64浏览
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 69浏览
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 62浏览
  • 置信区间反映的是“样本均值”这个统计量的不确定性,因此使用的是标准误(standard error),而不是直接用样本标准差(standard deviation)。标准误体现的是均值的波动程度,而样本标准差体现的是个体数据的波动程度,两者并非一回事,就如下图所显示的一样。下面优思学院会一步一步解释清楚:一、标准差和标准误,究竟差在哪?很多同学对“标准差”和“标准误”这两个概念傻傻分不清楚,但其实差别明显:标准差(Standard Deviation,σ或s):是衡量单个数据点相对于平均值波动的
    优思学院 2025-04-17 13:59 24浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 111浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 127浏览
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 52浏览
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 49浏览
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 66浏览
  • 【摘要/前言】4月春日花正好,Electronica就在浪漫春日里,盛大启幕。2025年4月15-17日,慕尼黑上海电子展于上海新国际博览中心成功举办。伴随着AI、新能源汽车、半导体的热潮,今年的Electronica盛况空前。请跟随Samtec的视角,感受精彩时刻!【 Samtec展台:老虎的朋友圈技术派对】借天时、占地利、聚人和,Samtec 展台人气爆棚!每年展会与大家相聚,总能收获温暖与动力~Samtec展台位于W3展馆716展位,新老朋友相聚于此,俨然一场线下技术派对!前沿D
    电子资讯报 2025-04-17 11:38 34浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 33浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦