周末连载|逆变器输出特性与非线性负载——看似简单的整流电路详解(六)

原创 英飞凌工业半导体 2022-09-10 07:00


逆变器输出特性与非线性负载


摘要

六期连载,解读UPS标准,研究线路阻抗对整流电容滤波这类非线性负载的影响,同时讨论针对整流电容滤波这类非线性负载逆变器输出特性的设计对策和测试方法。


前几讲的讨论是为了解决整流电容滤波电路的设计问题,发现如果滤波电感比较小的话,波形系数就比较大,有效值高于平均值的3倍以上,而峰值电流更是非常大。这样的负载对电网不友好,接在逆变器输出,对容量有限的逆变器是个挑战。所以我们需要研究一下逆变器的设计策略和测试评估方法。


单相整流电路的电容滤波负载分析


开机冲击电流


对于单相整流电路的电容滤波负载开机的时候,由于电容中没有储存能量,电压为零,所以第一个周期会出现一个大的浪涌电流,这对整流电路的电流应力和电网的冲击都很大,在通用变频器设计中一般会有个直流母线电容的预充电电路,有些整流电路设计可以用负温度系数的电阻抑制开机冲击电流,难免有不少设计对开机冲击电流抑制不力。



电流峰值


第五讲《整流电容滤波负载实例》中分析了一个类空调的单相全桥整流电路,其平均功率在700瓦水平,电容取值1500uf,当滤波电感为1mH时,二极管上峰值电流高达15.4A,比平均电流1.2A高12倍。这样的输入特性功率因数低,谐波电流大,对电网非常不友好,不能满足GB17625.1低压电气及电子设备发出的谐波电流限值(设备每相输入电流≤16A)要求。


这样的冲击电流和峰值电流,往往会超过逆变器150%的超载能力,也会超过逆变器功率开关IGBT的反向工作安全区,即两倍的器件标称电流。


逆变器的设计策略


从一般的分析中知道,增加线路阻抗,能有效降低冲击电流和峰值电流。由于电感上的电流不能突变,串接电感是个好方法。但对于逆变器来说,还可以从源头解决问题,即通过控制环的参数设置来降低冲击电流。


UPS应用中这一问题最突出,尤其单相无输出变压器的高频机,它们面对的负载是台式PC机或服务器,开机冲击电流大,不带PFC;早年的CRT显示器有消磁线圈,用正温度系数的电阻人为造成开机冲击消磁电流。面对很严酷的工况,UPS厂商找到了一种合理的解决方案,并制定的标准。方法就是降低UPS中逆变器的瞬态相应,把输出特性做软,避免输出大电流。


这就是IEC62040-3:1999《不间断电源设备第3部分:确定性能的方法和试验要求》中的5.3.1规定的稳态和动态输出电压特性。在标准里定义了三类动态输出性能。


逆变器的瞬态响应


最严的一类动态输出性能,规定了在UPS在负载突变的情况下,输出电压允许有30%的跌落和过冲,但5秒后必须进入电压恢复阶段,20毫秒(50Hz系统的一个周期)内恢复到+/-14%,100毫秒内恢复稳态+/-10%。这样的特性已经有助于降低冲击电流和电流峰值。但正弦电压可能有削峰的现象,一般不影响负载正常工作。


图1.一类动态输出性能


二类动态输出性能特性很软,在大的冲击电流下,输出降到零,以最大程度降低负载对UPS中逆变器的冲击,这种短时间的断电对整流滤波负载几乎没有什么太大影响。


图2.二类动态输出性能


三类动态输出性能是为后备式UPS定义的,由于后备式有电网和逆变器之间的切换时间和逆变器的启动时间。10毫秒的停电,大多数的开关电源可以接受,但用于照明已经可以感受到明显的间断。


图3.三类动态输出性能


逆变器的基准非线性负载


我们定义的UPS输出瞬态响应特性,那就需要有测试方法,IEC62040-3除了在正文中规定了阶跃性负载外,标准还有规范性附录《准非线性负载》,这是我们讨论的整流电容滤波负载很好的参考。


为了模拟一个单相稳态整流/电容器负载,接到UPS的负载是一个二极管整流桥。桥的输出侧接有一个电容器、电阻并联电路。总的单相负载可按下图连接的单个负载,或多个等效并联负载构成。


基准非线性负载


负载配置计算方法

U:UPS的额定输出电压,方均根值

f:UPS输出频率

Uc:整流电压

S:线性负载两端的表观功率---功率因数0.7,即表观功率S的70%将以有功功率消耗在R1和Rs上。

R1:电阻,设定其消耗有功功率为总表观功率S的66%。

Rs:串联的线性电阻,设定其消耗有功功率为总表观功率S的4%。


按照电容器电压Uc的5%峰谷值纹波电压,相应的时间常数为R1×C=7.5/f。


根据峰值电压,电网电压畸变,电网电缆压降和整流电压的纹波,整流电压平均值Uc按经验应为:


Uc=√2×0.92×0.96×0.975×U=1.22×U


电阻Rs、R1和电容C(单位:F)的值按下述计算:


Rs=0.04×U²/S

R1=Uc²/(0.66×S)

C=7.5/(f×R1)


试验方法


基准非线性负载与UPS的连接


(a) 对于33kVA以下的单相UPS,所用基准非线性负载的表观功率S等于UPS的额定表观功率。


(b) 额定值在33kVA以上的单相UPS,使用表观功率为33kVA的基准非线性负载,再加上线性负载,使之达到UPS的额定表观功率和额定有功功率。


(c) 设计用于三相负载,额定值在100kVA以下的三相UPS,应将三个相等的单相基准非线性负载接到UPS相间或线间。


(d) 额定值在100kVA以上的三相UPS,根据C)款,应使用100kVA的基准非线性负载,再加上线性负载,使之达到UPS额定表观功率和额定有功功率。


实例


为1000VA UPS设计一个非线性负载:

Uc=√2×0.92×0.96×0.975×U=1.22×U=1.22*220=268V


那么:

R1=Uc²/(0.66×S)=268²/(0.66*1000)=109 ohm

Rs=0.04×U²/S=0.04x220²/1000=1.9ohm


考虑实验条件:

R1=121 ohm

那么:

C=7.5/(50×121)=1240 uf


考虑实验条件:

C=1210 uf

仿真


对于整流滤波负载,如果没有电感的话,二极管峰值电流会很大,设线路阻性阻抗0.1欧姆,峰值电流超过30A,对电容充电时间只有1.29毫秒,占半周期的12.9%,这样高次谐波电流很大,功率因数很低。从实际负载消耗的有功功率仅746W,而视在功率是1687VA,功率因数为0.44。


2欧姆线路阻抗是基准非线性负载规定值,峰值电流也高达13A,但实际负载消耗的有功功率仅660W,而视在功率是992VA,功率因数为0.67。




市电校正


把这一基准非线性负载接到220V市电上去,由于线路实际存在阻性阻抗,没有串联2欧姆的Rs。实际测到峰值电流Ipk=22.5A,有效值电流为6.1A。


这时视在功率1381VA,有功功率684W,功率因数为0.5。


逆变器负载


把这一负载接到1kVA在线式UPS上去,由于UPS输出特性比较软,绿色的电压波形有削顶,抑制的峰值电流(红色)到Ipk=16.5A,有效值电流6.0A,见下测试波形。



结论


本文是从另外一个角度看整流滤波负载的二极管电流,了解线路阻抗对峰值电流等的影响,并做了一个视在功率为1000W的基准非线性负载作为实际案例与仿真结果进行对照。


要降低整流二极管上的峰值电流,提高整流电路的功率因数,使用滤波电抗器是最合理的方法,这可以有效降低二极管的电流应力,提高系统可靠性,这在通用变频器等系统设计中要考虑。


END



欢迎关注微信公众号

【英飞凌工业半导体】

英飞凌工业半导体 英飞凌工业半导体同名公众号是英飞凌功率半导体产品技术和应用技术的交流平台和值得收藏的资料库。提供新产品介绍,应用知识和经验分享,IGBT在线课程,线上线下研讨会发布和回放。 欢迎来稿:IPCWechat@infineon.com。
评论 (0)
  • 温度传感器的工作原理依据其类型可分为以下几种主要形式:一、热电阻温度传感器利用金属或半导体材料的电阻值随温度变化的特性实现测温:l ‌金属热电阻‌(如铂电阻 Pt100、Pt1000):高温下电阻值呈线性增长,稳定性高,适用于工业精密测温。l ‌热敏电阻‌(NTC/PTC):NTC 热敏电阻阻值随温度升高而下降,PTC 则相反;灵敏度高但线性范围较窄,常用于电子设备温控。二、热电偶传感器基于‌塞贝克效应‌(Seebeck effect):两种不同
    锦正茂科技 2025-05-09 13:31 136浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 300浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 366浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 335浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 190浏览
  • 硅二极管温度传感器是一种基于硅半导体材料特性的测温装置,其核心原理是利用硅二极管的电学参数(如正向压降或电阻)随温度变化的特性实现温度检测。以下是其工作原理、技术特点及典型应用:一、工作原理1、‌PN结温度特性‌硅二极管由PN结构成,当温度变化时,其正向电压 VF与温度呈线性负相关关系。例如,温度每升高1℃,VF约下降2 mV。2、‌电压—温度关系‌通过jing确测量正向电压的微小变化,可推算出环境温度值。部分型号(如SI410)在宽温域内(如1.4 K至475 K)仍能保持高线性度。
    锦正茂科技 2025-05-09 13:52 143浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 287浏览
  • 飞凌嵌入式作为龙芯合作伙伴,隆重推出FET-2K0300i-S全国产自主可控工业级核心板!FET-2K0300i-S核心板基于龙芯2K0300i工业级处理器开发设计,集成1个64位LA264处理器,主频1GHz,提供高效的计算能力;支持硬件ECC;2K0300i还具备丰富的连接接口USB、SDIO、UART、SPI、CAN-FD、Ethernet、ADC等一应俱全,龙芯2K0300i支持四路CAN-FD接口,具备良好的可靠性、实时性和灵活性,可满足用户多路CAN需求。除性价比超高的国产处理器外,
    飞凌嵌入式 2025-05-07 11:54 78浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 450浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 552浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦