嵌入式工程师,别怪"浮点数"太坑!(C语言版本)

嵌入式ARM 2020-05-01 00:00


1、浮点数如何存储

    大家在平时的嵌入式软件开发过程中应该对整形的存储形式会比较熟悉,因为我们进行底层寄存器的配置大部分都是使用无符号整形进行赋值写入,然而对于有符号整形的存储形式你是否已经了解清楚了?对于浮点类型的数据的存储呢?好吧,今天这篇文章主要是对浮点类型数据进行讲解,其他相关大家可以查阅相关资料阅读学习,作者后续也会整理发布。

1)浮点存储形式 

    对于语法等知识一般都是建立在一定的规范之上的,不然不利于技术的兼容统一发展,但是在不同的领域由于有着不同的需求,可能遵循的规范有所差异,对于浮点数的规范目前大部分系统都采用的是IEEE 754标准。我们这里以4字节单精度浮点类型为例子为大家讲解一下浮点数的存储形式:(其他浮点数存储仅仅每部分数据大小不同)

    对于浮点数的存储形式可以用2进制科学计数法表示:

    (符号:+/-)1.(二进制尾数)*2^(指数=实际指数+偏移量)

    对于这几个名词不是特别好解释,结合实际转化过程会更加好理解:(这里以float型浮点数:4.25为例子,如下转化示意图)

  • 对于小数部分的二进制表示采用除二反取的方法获得;

  • 23bit的尾数部分前面0001即为科学二进制的小数点后面部分,其他bit用0填充;

  • 指数部分会添加一个偏移量127,这个仅仅是对于float类型;对于其他浮点类型由于表示的数据范围不同偏移也不同,比如double需要+1023的偏移。

  • 由于我们举例4.25 > 1,那么我们实际指数 > 0;如果我们的浮点是0.025,这个时候实际指数为负数,大家可以尝试编码转化。

2)浮点精度问题 

    我们通过上面浮点数的存储方式可以知道8bit的指数最大可以表示255,最大值的指数就是255 - 127 = 128,2^128 = 3.402..e+38;(确实非常大!)

    如果用我们的4byte无符号整形表示最大数据为2^32,看起来远远小于浮点表示;不过大家是否想过一个问题,根据数据二进制一一对应原则都是4byte的表示方法为什么有这么大差异,难道浮点数凭空创造了更多的数据吗?

    非也非也,指数部分代表着浮点数的范围,尾数部分代表着浮点数的精度;我们从尾数的角度来看,浮点的二进制科学计数法小数点前始终是最高位,这也就意味指数越大,尾数部分所表示的数值越大,其精度越差。所以float与uint表示的数据个数都是一样的,整形表示的数据是均匀的,而浮点表示的数据在数值比较小的时候精度比较高,而数值比较大的时候就比较低了,同时也说明浮点表示仅仅是一种近似的表示方法,不能精确的表示数值,所以有时候大家在编程的过程中明明向float类型变量赋值了一个准确的数据,仿真一看数据成了一个近似值。

3)浮点与"==" 

    这个问题也是大家经常讨论的,不过还是需要具体情况具体分析,到底浮点数能不能用等于号来进行判断呢?首先我们看看什么叫相等,相等就是一模一样,对于计算机而言就是二进制相等,否则我们只能叫近似。前面我们了解到了浮点的存储形式,如果两个浮点的三个部分都是相等的(符号位+指数+尾数),那么这个时候这两个浮点数就是绝对的相等,如果不能达到完全相等就只能使用近似判断相等,比如我们常用下面的方式来表示:

/***************************************
*Author:(公众号:最后一个bug)
****************************************/

#define FLOAT_EPS (0.000001//根据需求
#define Float_Equ(a, b) ((fabs((a)-(b)))<(FLOAT_EPS))

    不过对于浮点数相等大家尽量还是减少使用,较多浮点运算控制器都会有不同的处理方式,比如说扩展精度、截取尾数等等,对于代码的可移植性减弱。

  

2、玩转浮点数

    前面为大家详细的介绍了浮点数的理论知识,大家好好温习一下,这里再为大家分享一下平时用得比较多的浮点数案例,特别是在通信中传输浮点数据,数据的组拼容易出现的一些小插曲,同时也是初学者容易忽略的知识点:

(代码走起!)

#include <stdio.h>
#include <stdlib.h>

typedef union _tag_FloatConvert
{
    unsigned char byte[4];
    float Result;
}uFloatConvert;
/*****************************************
 * Fuction: main 
 * Author :(公众号:最后一个bug) 
 *****************************************/

int main(int argc, char *argv[]) {
    uFloatConvert unFloatConvert; 
    float fVal   = 4.25;
    int   iVal   = 0x40880000;
    float *pfVal = NULL; 
    int   *pIVal = NULL; 

    //1)初学组拼数据经常的错误 
    fVal  = (float)iVal;
    printf("*fVal = %.3f\n",fVal);
    printf("iVal = %d\n",iVal);
    //2) 正确组拼数据 
    pfVal = (float*)(&iVal);
    printf("*pfVal = %.3f\n",*pfVal);

    //3)采用共联体进行数据转化(方便)--大家以后可以封装成函数 
    unFloatConvert.byte[0] = 0x00;
    unFloatConvert.byte[1] = 0x00;
    unFloatConvert.byte[2] = 0x88;
    unFloatConvert.byte[3] = 0x40;
    printf("unFloatConvert.Result = %.3f\n",unFloatConvert.Result);
    printf("公众号:最后一个bug\n");
    return 0;
}

    运行结果如下:

    解析一下:

  • 1 ) 很多初学者做浮点通信字节接收把接收到的数据组织成整形然后直接强制类型转化为浮点,然而这样并不能转化为原始的浮点数,从上面的运行结果也可以看出来;然而我们采用float指针来进行如上转换却得到了正确结果,具体的原因大家通过第一个和第二个打印结果应该就明白了。

  • 2 ) 同时作者这里给出了平时用来转化浮点的共联体方法,该方法使用起来比较灵活方便,主要的原理是共联体共用内存空间,不过要注意大小端问题,相关知识可以看我的往期文章。


本文授权转载自公众号“最后一个bug”,作者未知bug

嵌入式ARM 关注这个时代最火的嵌入式ARM,你想知道的都在这里。
评论
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 109浏览
  • 应用环境与极具挑战性的测试需求在服务器制造领域里,系统整合测试(System Integration Test;SIT)是确保产品质量和性能的关键步骤。随着服务器系统的复杂性不断提升,包括:多种硬件组件、操作系统、虚拟化平台以及各种应用程序和服务的整合,服务器制造商面临着更有挑战性的测试需求。这些挑战主要体现在以下五个方面:1. 硬件和软件的高度整合:现代服务器通常包括多个处理器、内存模块、储存设备和网络接口。这些硬件组件必须与操作系统及应用软件无缝整合。SIT测试可以帮助制造商确保这些不同组件
    百佳泰测试实验室 2024-12-12 17:45 39浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 110浏览
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 68浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 83浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 86浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-12 10:13 31浏览
  • 本文介绍瑞芯微RK3588主板/开发板Android12系统下,APK签名文件生成方法。触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,该开发板是核心板加底板设计,音视频接口、通信接口等各类接口一应俱全,可帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。工具准备下载Keytool-ImportKeyPair工具在源码:build/target/product/security/系统初始签名文件目录中,将以下三个文件拷贝出来:platform.pem;platform.
    Industio_触觉智能 2024-12-12 10:27 43浏览
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 82浏览
  • 全球智能电视时代来临这年头若是消费者想随意地从各个通路中选购电视时,不难发现目前市场上的产品都已是具有智能联网功能的智能电视了,可以宣告智能电视的普及时代已到临!Google从2021年开始大力推广Google TV(即原Android TV的升级版),其他各大品牌商也都跟进推出搭载Google TV操作系统的机种,除了Google TV外,LG、Samsung、Panasonic等大厂牌也开发出自家的智能电视平台,可以看出各家业者都一致地看好这块大饼。智能电视的Wi-Fi连线怎么消失了?智能电
    百佳泰测试实验室 2024-12-12 17:33 45浏览
  • 在智能化技术快速发展当下,图像数据的采集与处理逐渐成为自动驾驶、工业等领域的一项关键技术。高质量的图像数据采集与算法集成测试都是确保系统性能和可靠性的关键。随着技术的不断进步,对于图像数据的采集、处理和分析的需求日益增长,这不仅要求我们拥有高性能的相机硬件,还要求我们能够高效地集成和测试各种算法。我们探索了一种多源相机数据采集与算法集成测试方案,能够满足不同应用场景下对图像采集和算法测试的多样化需求,确保数据的准确性和算法的有效性。一、相机组成相机一般由镜头(Lens),图像传感器(Image
    康谋 2024-12-12 09:45 74浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦