电子封装用陶瓷基板材料及其制备工艺!三维陶瓷基板的五大制备技术浅析

滤波器 2022-09-07 06:30


1. 电子封装用陶瓷基板材料及其制备工艺


陶瓷基板由于其良好的导热性、耐热性、绝缘性、低热膨胀系数和成本的不断降低,在电子封装特别是功率电子器件如IGBT(绝缘栅双极晶体管)、LD(激光二极管)、大功率LED(发光二极管)、CPV(聚焦型光伏)封装中的应用越来越广泛。

陶瓷基片主要包括氧化铍(BeO)、氧化铝(Al2O3)和氮化铝(AlN)、氮化硅(Si3N4)。与其他陶瓷材料相比,Si3N4陶瓷基片具有很高的电绝缘性能和化学稳定性,热稳定性好,机械强度大,可用于制造高集成度大规模集成电路板。


几种陶瓷基片材料性能比较

从结构与制造工艺而言,陶瓷基板又可分为HTCC、LTCC、TFC、DBC、DPC等。



高温共烧多层陶瓷基板(HTCC)


HTCC,又称高温共烧多层陶瓷基板。制备过程中先将陶瓷粉(Al2O3或AlN)加入有机黏结剂,混合均匀后成为膏状浆料,接着利用刮刀将浆料刮成片状,再通过干燥工艺使片状浆料形成生坯;然后依据各层的设计钻导通孔,采用丝网印刷金属浆料进行布线和填孔,最后将各生坯层叠加,置于高温炉(1600℃)中烧结而成。此制备过程因为烧结温度较高,导致金属导体材料的选择受限(主要为熔点较高但导电性较差的钨、钼、锰等金属),制作成本高,热导率一般在20~200W/(m·℃)。



低温共烧陶瓷基板(LTCC)


LTCC,又称低温共烧陶瓷基板,其制备工艺与HTCC类似,只是在Al2O3粉中混入质量分数30%~50%的低熔点玻璃料,使烧结温度降低至850~900℃,因此可以采用导电率较好的金、银作为电极材料和布线材料。因为LTCC采用丝网印刷技术制作金属线路,有可能因张网问题造成对位误差;而且多层陶瓷叠压烧结时还存在收缩比例差异问题,影响成品率。为了提高LTCC导热性能,可在贴片区增加导热孔或导电孔,但成本增加。



厚膜陶瓷基板(TFC)


相对于LTCC和HTCC,TFC为一种后烧陶瓷基板。采用丝网印刷技术将金属浆料涂覆在陶瓷基片表面,经过干燥、高温烧结(700~800℃)后制备。金属浆料一般由金属粉末、有机树脂和玻璃等组分。经高温烧结,树脂粘合剂被燃烧掉,剩下的几乎都是纯金属,由于玻璃质粘合作用在陶瓷基板表面。烧结后的金属层厚度为10~20μm,最小线宽为0.3mm。由于技术成熟,工艺简单,成本较低,TFC在对图形精度要求不高的电子封装中得到一定应用。



直接键合铜陶瓷基板(DBC)


由陶瓷基片与铜箔在高温下(1065℃)共晶烧结而成,最后根据布线要求,以刻蚀方式形成线路。由于铜箔具有良好的导电、导热能力,而氧化铝能有效控制 Cu-Al2O3-Cu复合体的膨胀,使DBC基板具有近似氧化铝的热膨胀系数。

DBC基板制备工艺流程

DBC具有导热性好、绝缘性强、可靠性高等优点,已广泛应用于IGBT、LD和CPV 封装。DBC缺点在于,其利用了高温下Cu与Al2O3间的共晶反应,对设备和工艺控制要求较高,基板成本较高;由于Al2O3与Cu层间容易产生微气孔,降低了产品抗热冲击性;由于铜箔在高温下容易翘曲变形,因此DBC表面铜箔厚度一般大于100m;同时由于采用化学腐蚀工艺,DBC基板图形的最小线宽一般大于100m。



直接镀铜陶瓷基板(DPC)


其制作首先将陶瓷基片进行前处理清洗,利用真空溅射方式在基片表面沉积Ti/Cu层作为种子层,接着以光刻、显影、刻蚀工艺完成线路制作,最后再以电镀/化学镀方式增加线路厚度,待光刻胶去除后完成基板制作。

DPC基板制备工艺流程

DPC技术具有如下优点:低温工艺(300℃以下),完全避免了高温对材料或线路结构的不利影响,也降低了制造工艺成本;采用薄膜与光刻显影技术,使基板上的金属线路更加精细,因此DPC基板非常适合对准精度要求较高的电子器件封装。但DPC基板也存在一些不足:电镀沉积铜层厚度有,且电镀废液污染大;金属层与陶瓷间的结合强度较低,产品应用时可靠性较低。

来源:先进陶瓷材料 | 先进陶瓷展


2.  三维陶瓷基板的五大制备技术浅析


许多微电子器件(如加速度计、陀螺仪、深紫外LED等)芯片对空气、湿气、灰尘等非常敏感。如LED芯片理论上可工作10万小时以上,但水汽侵蚀会大大缩短其寿命。为了提高这些微电子器件性能,必须将其芯片封装在真空或保护气体中,实现气密封装。因此,必须首先制备含腔体(围坝)结构的三维陶瓷基板,满足封装应用需求。

三维陶瓷基板性能对比↓↓


目前,常见的三维陶瓷基板主要有:高/低温共烧陶瓷基板(HTCC/LTCC)、多层烧结三维陶瓷基板(MSC)、直接粘接三维陶瓷基板(DAC)、多层镀铜三维陶瓷基板(MPC)以及直接成型三维陶瓷基板(DMC)等。
01
高/低温共烧陶瓷基板(HTCC/LTCC)


HTCC基板制备过程中先将陶瓷粉(Al2O3或AlN)加入有机黏结剂,混合均匀后成为膏状陶瓷浆料,接着利用刮刀将陶瓷浆料刮成片状,再通过干燥工艺使片状浆料形成生胚;然后根据线路层设计钻导通孔,采用丝网印刷金属浆料进行布线和填孔,最后将各生胚层叠加,置于高温炉(1600℃)中烧结而成。由于HTCC基板制备工艺温度高,因此导电金属选择受限,只能采用熔点高但导电性较差的金属(如W、Mo及Mn等),制作成本较高。



此外,受到丝网印刷工艺限制,HTCC基板线路精度较差,难以满足高精度封装需求。但HTCC基板具有较高机械强度和热导率[20W/(m·K)~200W/(m·K)],物化性能稳定,适合大功率及高温环境下器件封装。

为了降低HTCC制备工艺温度,同时提高线路层导电性,业界开发了LTCC基板。与HTCC制备工艺类似,只是LTCC制备在陶瓷浆料中加入了一定量玻璃粉来降低烧结温度,同时使用导电性良好的Cu、Ag和Au等制备金属浆料。LTCC基板制备温度低,但生产效率高,可适应高温、高湿及大电流应用要求,在军工及航天电子器件中得到广泛应用。



LTCC制备工艺流程

虽然LTCC基板具有上述优势,但由于在陶瓷浆料中添加了玻璃粉,导致基板热导率偏低[一般仅为3W/(m·K)~7W/(m·K)]。此外,与HTCC一样,由于LTCC基板采用丝网印刷技术制作金属线路,有可能因张网问题造成对位误差,导致金属线路层精度低;而且多层陶瓷生胚叠压烧结时还存在收缩比例差异问题,影响成品率,一定程度上制约了LTCC基板技术发展。


02
多层烧结三维陶瓷基板(MSC)


与HTCC/LTCC基板一次成型制备三维陶瓷基板不同,台湾阳升公司采用多次烧结法制备了MSC基板。首先制备厚膜印刷陶瓷基板(TPC),随后通过多次丝网印刷将陶瓷浆料印刷于平面TPC基板上,形成腔体结构,再经高温烧结得到MSC基板。

由于陶瓷浆料烧结温度一般在800℃左右,因此要求下部的TPC基板线路层必须能耐受如此高温,防止在烧结过程中出现脱层或氧化等缺陷。TPC基板线路层由金属浆料高温烧结(一般温度为850℃~900℃)制备,具有较好的耐高温性能,适合后续采用烧结法制备陶瓷腔体。


MSC陶瓷基板制备工艺流程


MSC基板技术生产设备和工艺简单,平面基板与腔体结构独立烧结成型,且由于腔体结构与平面基板均为无机陶瓷材料,热膨胀系数匹配,制备过程中不会出现脱层、翘曲等现象。其缺点在于,下部TPC基板线路层与上部腔体结构均采用丝网印刷布线,图形精度较低;同时,因受丝网印刷工艺限制,所制备的MSC基板腔体厚度有限。因此MSC三维基板仅适用于体积较小、精度要求不高的电子器件封装


03
直接粘接三维陶瓷基板(DAC)


上述HTCC、LTCC及MSC基板线路层都采用丝网印刷制备,精度较低,难以满足高精度、高集成度封装要求,因此业界提出在高精度DPC陶瓷基板上成型腔体制备三维陶瓷基板。由于DPC基板金属线路层在高温(超过300℃)下会出现氧化、起泡甚至脱层等现象,因此基于DPC技术的三维陶瓷基板制备必须在低温下进行。


DAC三维陶瓷基板制备工艺流程


台湾瑷司柏公司(ICP)提出采用胶粘法制备三维陶瓷基板。首先加工金属环和DPC陶瓷基板,然后采用有机粘胶将金属环与DPC基板对准后粘接、加热固化。由于胶液流动性好,涂胶工艺简单,成本低,易于实现批量生产,且所有制备工艺均在低温下进行,不会对DPC基板线路层造成损伤。但由于有机粘胶耐热性差,固化体与金属、陶瓷间热膨胀系数差较大,且为非气密性材料,目前DAC陶瓷基板主要应用于线路精度要求较高,但对耐热性、气密性、可靠性等要求较低的电子器件封装。

为了解决上述不足,业界进一步提出采用无机胶替代有机胶的粘接技术方案,大大提高了DAC三维陶瓷基板的耐热性和可靠性。其技术关键是选用无机胶,要求其能在低温(低于200℃)下固化;固化体耐热性好(能长期耐受300℃高温),与金属、陶瓷材料粘接性好(剪切强度大于10MPa),同时与金属环(围坝)和陶瓷基片材料热膨胀系数匹配(降低界面热应力)。


04
多层电镀三维陶瓷基板(MPC)


MPC基板采用图形电镀工艺制备线路层,避免了HTCC/LTCC与TPC基板线路粗糙问题,满足高精度封装要求。陶瓷基板与金属围坝一体化成型为密封腔体,结构紧凑,无中间粘结层,气密性高。


MPC陶瓷基板制备工艺流程


MPC基板整体为全无机材料,具有良好的耐热性,抗腐蚀、抗辐射等。金属围坝结构形状可以任意设计,围坝顶部可制备出定位台阶,便于放置玻璃透镜或盖板,目前已成功应用于深紫外LED封装和VCSEL激光器封装,已部分取代LTCC基板

其缺点在于:由于干膜厚度限制,制备过程需要反复进行光刻、显影、图形电镀与表面研磨,耗时长(厚度为600μm围坝需要电镀10h以上),生产成本高;此外,由于电镀围坝铜层较厚,内部应力大,MPC基板容易翘曲变形,影响后续的芯片封装质量与效率。


05
直接成型三维陶瓷基板(DMC)


DMC基板的制备,首先制备平面DPC陶瓷基板,同时制备带孔橡胶模具;将橡胶模具与DPC陶瓷基板对准合模后,向模具腔内填充牺牲模材料;待牺牲模材料固化后,取下橡胶模具,牺牲模粘接于DPC陶瓷基板上,并精确复制橡胶模具孔结构特征,作为铝硅酸盐浆料成型模具;随后将铝硅酸盐浆料涂覆于DPC陶瓷基板上并刮平,加热固化,最后将牺牲模材料腐蚀,得到含铝硅酸盐免烧陶瓷围坝的三维陶瓷基板。


DMC陶瓷基板制备工艺流程


铝硅酸盐浆料固化温度低,对DPC陶瓷基板线路层影响极小,并与DPC基板制备工艺兼容。橡胶具有易加工、易脱模以及价格低廉等特点,能精确复制围坝结构(腔体)形状与尺寸,保证围坝加工精度。有实验结果表明,腔体深度、直径加工误差均小于30μm,说明该工艺制备的三维陶瓷基板精度高,重复性好,适合量产铝硅酸盐浆料加热后脱水缩合,主要产物为无机聚合物,其耐热性好,热膨胀系数与陶瓷基片匹配,具有良好的热稳定性;固化体与陶瓷、金属粘接强度高,制备的三维陶瓷基板可靠性高。围坝厚度(腔体高度)取决于模具厚度,理论上不受限制,可满足不同结构和尺寸的电子器件封装要求。

转自:广州先进陶瓷展

|推荐阅读|



  • SAW声表滤波器与BAW滤波器技术

  • 使用超过10年的基站天线之拆机详解

  • 爱立信收购凯仕林天线和滤波器部门

  • 滤波器专业英语初级篇(更新版)

  • 国内首款BAW四工器产品下线

  • 5G陶瓷介质滤波器逐步成为行业主流!

  • 这25家滤波器公司都不知道,真是白活了

© 滤波器 微信公众号

滤波器 欢迎滤波器+微波射频行业人士关注! 掘弃平庸,学习更专业的技术知识!
评论
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 182浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 143浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 278浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 604浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 109浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 137浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 115浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 40浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 347浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 138浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦