如何使用Delta-Sigma转换器提高热电偶和RTD的温度传感器精度

摩尔学堂 2022-09-06 18:00

该设计解决方案评估用于高温测量的热电偶以及用于局部冷端补偿 (CJC) 点的电阻温度检测器 (RTD) 的精度。

温度是传感器领域中最常检测到的特性。例如,复杂的燃气涡轮发动机需要全面的仪器设备才能安全、正确地运行,而温度是最关键的最终评估参数之一。

在燃气涡轮发动机中,数百个热电偶提供入口、内部和出口温度,以实现在不同运行条件下的发动机控制,以监测高温部件的健康状况,并计算压缩机和涡轮机的效率(图 1)。

图 1. 海上石油平台使用燃气涡轮发动机。

该设计解决方案评估用于高温测量的热电偶以及用于局部冷端补偿 (CJC) 点的电阻温度检测器 (RTD) 的精度。此外,我们将重点介绍多通道、Δ-Σ (ΔΣ) 模数转换器 (ADC) 如何通过包括片上集成可编程增益放大器、电流源和卓越的低噪声特性。

热电偶与 RTD

热电偶和 RTD 似乎截然相反,但它们各自的特性非常适合温度传感应用。热电偶测量涡轮发动机的极端温度,而 RTD 提供准确的 PCB CJC 测量。表 1 总结了 RTD 和热电偶温度传感器的主要特性。

表 1. 基本 RTD 和热电偶温度传感器特性的比较

 

热电偶是涡轮发动机内部传感活动的前沿和中心,因为它具有广泛的高温传感范围。RTD 精度适当地满足了 CJC 的需求。

热电偶特性

热电偶因其坚固的操作和 -270°C 至 +1820°C 的温度范围而成为适合高温传感的传感器。热电偶的坚固能力使这种小型、廉价的传感器能够在具有不同程度大气压的恶劣环境(如液体或气体)中承受饱和。

热电偶有两根不同金属或合金的电线(≥ 20 AWG 和 ≤ 100 英尺)。例如,K 型热电偶的两条引线是 Chromel 和 Alumel。所有热电偶在形成热电偶接头的两根导线的一端都有一个焊道。焊道与热电偶的两条明线或尾端之间的温差会产生一个响应温差的小电动势 (EMF) 电压。热电偶不需要电压或电流激励。

传感器从焊道到尾端的输出电压在毫伏范围内,具有塞贝克或温度系数(通常为 50μV/°C)。塞贝克系数是热电偶 EMF 电压随温度变化的一阶导数。

热电偶的温度范围和塞贝克系数取决于特定的热电偶类型或金属铅材料(表 2)。表 2 显示了热电偶导体的类型、它们的指定温度范围以及取决于双金属导体的塞贝克系数。

表 2. 热电偶类型

热电偶在很宽的温度范围内产生从 0V 到几十毫伏的电压。热电偶输出电压是可重复的,但随温度变化是非线性的。由于所有热电偶都是非线性的,因此塞贝克系数的值也随温度而变化。

美国测试与材料协会 (ASTM) 根据 NIST 专论 175 对 IST-90 装置进行了全面表征,并在表 2 中的热电偶中进行了详细说明。此外,热电偶制造商通常会提供 EMF 电压与温度的关系表。

小型、绝对和 delta 热电偶电压与 24 位 ΔΣ delta-sigma 模数转换器 (ΔΣ ADC) 完美匹配,典型的最低有效位 (LSB) 等于电源电压除以数字转换器代码。

其中 N = ADC 分辨率,G = (PGA) 增益

如果 ADC 的最大输入范围为 5V,并且 PGA 增益为 8,则 24 位转换器的 LSB 为 37.25nV。

热电阻特性

热电偶系统需要第二个准确的温度系统作为 CJC 参考点。RTD 温度传感器是工业和医疗应用的标准配置,因为它们在 -200°C 至 +850°C 温度范围内具有高精度和可重复性。RTD 传感器的精度和可重复性特性满足热电偶系统 CJC 的需求。

通常,RTD 由一根细温度敏感线组成,例如缠绕在陶瓷或玻璃绝缘芯上的纯铂、镍或铜。RTD 的电阻随着温度的升高而线性增加。

RTD 的电阻与温度曲线相当线性,但有一些曲率,如 Callendar-Van Dusen 方程所述:

R(T) = R0(1 + aT + bT 2 + c (T - 100) T 3 )

在哪里:

  • T = 温度 (°C)

  • R(T) = T 处的电阻

  • R0 = T = 0°C 时的电阻

铂 PT100 的 0°C 规格为 100Ω。RTD 传感器的 PCB 位置必须靠近热电偶到 PCB 线的连接。RTD 电阻器需要电流或电压激励才能将元件的电阻更改为伏特。实际热电偶焊道温度是测得的热电偶焊道温度加上测得的 RTD 温度。

第一次做对

所有热电偶和 RTD 系统面临的挑战是第一次获得最准确的温度读数。这种高水平的温度监控可确保被测环境随着时间的推移提供准确且可重复的结果。

传统的热电偶加 RTD 传感器信号链包括两个分立的前端放大器,后面是模拟滤波器,然后是 SAR ADC。这种繁琐、多封装、需要大量 PCB 的解决方案可能是准确的。然而,紧凑型 ΔΣ ADC 将所有这些功能都包含在一个紧凑型封装中。

Delta-Sigma ADC 和热电偶

具有内置 PGA、50Hz/60Hz 数字滤波器和外部低通滤波器的低噪声 ΔΣ ADC 是对 K 型热电偶输出进行数字化的合适替代方案(图 2)。

图 2. 具有内部 PGA 级的 ADC,后接强大的三阶调制器和 Sinc/FIR 数字滤波器

在图 2 中,K 型热电偶连接到 ΔΣ ADC 的模拟 AIN4 和 AIN5 引脚。横跨 AIN8 和 AIN9 的 RTD 检测热电偶尾端连接到 PCB 铜迹线的温度。所有四个连接都通过输入多路复用器和一个内部 PGA,然后是一个三阶 ΔΣ 调制器/SINC/FIR 数字滤波器组合。

MAX11410 24位ΔΣ ADC是一款低功耗多通道转换器十个模拟输入的配置可以是任意组合的单端或全差分连接。这十个输入允许连接多达四个热电偶和一个 CJC RTD。两个集成和匹配的电流源,具有 16 个可编程电流水平,为 RTD 传感器提供激励。电流源可以连接到任何模拟输入引脚,而额外的电流吸收器和电流源有助于检测热电偶传感器线是否损坏。集成偏置电压源可以连接到一个或多个模拟输入。该偏置电压源用于为热电偶测量提供偏置电压。

模拟输入和 Δ-Σ 调制器输入之间的配置可以包括增益步长为 1 至 128 的 PGA 模式。24 位 ΔΣ ADC 可同时实现 90dB 的 60Hz 和 50Hz 电源线抑制和 3ppm INL,并且没有丢失代码。参考源的选择在多个参考输入引脚和模拟电源之间。

热电偶产生毫伏输出信号,涡轮发动机需要从 +400°C 到 +1000°C 的温度测量。在此温度范围内,K 型热电偶的输出范围约为 16.397mV 至 33.275mV,塞贝克系数为 41±2μV/°C。连接到 3.3V 供电的 ΔΣ ADC 的 K 型热电偶的正确设置是 PGA 增益为 8,采样率为 8.4sps(每秒采样数)。此配置提供 19.8 位 RMS 分辨率,RMS 噪声电平等于 0.684μVRMS。

Δ-Σ ADC 和 RTD

RTD 在铜连接处测量热电偶的尾端,以提供 CJC 参考。RTD 尽可能靠近结连接器至关重要。RTD 采用铂 PT100 的激励电流(IRTD 使用内部 MAX11410 电流源),PGA 设置为 8 时为 300μA。RTD 元件的温度系数为 0.00385Ω/Ω/°C,电阻为 84.27Ω -40°C 和 +105°C 时为 140.39Ω。

Delta-Sigma ADC、热电偶和 RTD 误差

热电偶(现场测量)和 RTD(CJC 测量)温度精度误差同样对最终温度测量有影响。表 3 总结了这些贡献,并提供了最坏情况的求和和平方和的平方根 (RSS) 计算。

表 3. MAX11410 数字化仪误差

表 3 中的 TC 温度值等于:

  • 增益误差 → 增益误差 x 1000°C

  • IR 误差 → 输入电流 x (RIN4 + RIN5)/SC

  • ADC/PGA 偏移 → ADC/PGA 偏移/SC

表 3 中的 RTD (CJ) 值等于:

  • 增益误差 → 增益误差/(RTD Tempco)

  • 参考输入电流 → SC/(参考输入电流 x RREF)

根据表 3,总和或最坏情况热电偶和 RTD 精度误差等于 0.50°C,在热电偶的 +400°C 至 +1000°C 温度范围和 RTD 的 -40°C 至 +105°C 温度范围内计算得出范围。

RSS 精度误差是有效的,因为表 3 中的四个误差与两个传感器之间没有相关性。在该系统中,RSS 精度误差等于 0.29°C,在相同的温度范围内。

图 3 显示了基于 MAX11410 的MAXREFDES1154双通道 RTD/TC 测量系统。该参考设计为热电偶/RTD/MAX11410 组合提供了完整的概念验证。

图 3.  MAXREFDES1154 硬件

结论

发动机、工业和过程控制应用需要在宽温度范围内具有高精度温度传感活动的电气环境。该设计解决方案评估了热电偶和 RTD 温度传感器的精度,发现带有辅助电流源和电压参考矩阵的 24 位 ΔΣ ADC 成功地获得了高精度热电偶结果。

----------------------------------------------

1、深入理解SerDes(Serializer-Deserializer)之一

2、深入理解SerDes(Serializer-Deserializer)之二

3、科普:深入理解SerDes(Serializer-Deserializer)之三

4、资深工程师的ESD设计经验分享

5、干货分享,ESD防护方法及设计要点!

6、科普来了,一篇看懂ESD(静电保护)原理和设计!

7、锁相环(PLL)基本原理 及常见构建模块

8、当锁相环无法锁定时,该怎么处理的呢?

9、高性能FPGA中的高速SERDES接口

10、什么是毫米波技术?它与其他低频技术相比有何特点?

11、如何根据数据表规格算出锁相环(PLL)中的相位噪声

12、了解模数转换器(ADC):解密分辨率和采样率

13、究竟什么是锁相环(PLL)

14、如何模拟一个锁相环

15、了解锁相环(PLL)瞬态响应

16、如何优化锁相环(PLL)的瞬态响应

17、如何设计和仿真一个优化的锁相环

18、锁相环(PLL) 倍频:瞬态响应和频率合成

19、了解SAR ADC

20、了解 Delta-Sigma ADC

21、什么是数字 IC 设计?

22、什么是模拟 IC 设计?

23、什么是射频集成电路设计?

24、学习射频设计:选择合适的射频收发器 IC

25、连续时间 Sigma-Delta ADC:“无混叠”ADC

26、了解电压基准 IC 的噪声性能

27、数字还是模拟?I和Q的合并和分离应该怎么做?

28、良好通信链路性能的要求:IQ 调制和解调

29、如何为系统仿真建模数据转换器?

30、干货!CMOS射频集成电路设计经典讲义(Prof. Thomas Lee)

31、使用有效位数 (ENOB) 对 ADC 进行建模

32、以太网供电 (PoE) 的保护建议

33、保护高速接口的设计技巧

34、保护低速接口和电源电路设计技巧

35、使用互调多项式和有效位数对 ADC 进行建模

36、向 ADC 模型和 DAC 建模添加低通滤波器

37、揭秘芯片的内部设计原理和结构

38、Delta-Sigma ADCs中的噪声简介(一)

39、Delta-Sigma ADCs中的噪声简介(二)

40、Delta-Sigma ADCs 中的噪声简介(三)

41、了解Delta-Sigma ADCs 中的有效噪声带宽(一)

42、了解Delta-Sigma ADCs 中的有效噪声带宽(二)

43、放大器噪声对 Delta-Sigma ADCs 的影响(一)

44、放大器噪声对 Delta-Sigma ADCs 的影响(二)

45、参考电压噪声如何影响 Delta Sigma ADCs

46、如何在高分辨率Delta-Sigma ADCs电路中降低参考噪声

47、时钟信号如何影响精密ADC

48、了解电源噪声如何影响 Delta-Sigma ADCs

49、运算放大器简介和特性

50、使用 Delta-Sigma ADCs 降低电源噪声的影响

51、如何设计带有运算放大器的精密电流泵

52锁定放大器的基本原理

53了解锁定放大器的类型和相关的噪声源

54、用于降低差分 ADC 驱动器谐波失真的 PCB 布局技术

55、干货!《实用的RFIC技术》课程讲义

56、如何在您的下一个 PCB 设计中消除反射噪声

57、硅谷“八叛徒”与仙童半导体(Fairchild)的故事!                                                                              

往期精彩课程分享

1、免费公开课ISCAS 2015 :The Future of Radios_ Behzad Razavi

2、免费公开课:从 5 微米到 5 纳米的模拟 CMOS(Willy Sansen)

3、免费公开课:变革性射频毫米波电路(Harish Krishnaswamy)

4、免费公开课:ESSCIRC2019-讲座-Low-Power SAR ADCs

5、免费公开课:ESSCIRC2019-讲座-超低功耗接收器(Ultra-Low-Power Receivers)

6、免费公开课:CICC2019-基于 ADC 的有线收发器(Yohan Frans Xilinx)

7、免费公开课:ESSCIRC 2019-有线与数据转换器应用中的抖动

8、免费公开课:ISSCC2021 -锁相环简介-Behzad Razavi

9、免费公开课:ISSCC2020-DC-DC 转换器的模拟构建块

10、免费公开课:ISSCC2020-小数N分频数字锁相环设计

11、免费公开:ISSCC2020-无线收发器电路和架构的基础知识(从 2G 到 5G)

12、免费公开课:ISSCC2020-从原理到应用的集成变压器基础

13、免费公开课:ISSCC2021-射频和毫米波功率放大器设计的基础


点击下方“公众号”,关注更多精彩



专注于半导体人才培训,在线学习服务平台!


半导体人才招聘服务平台

摩尔学堂 摩尔学堂专注于半导体人才培训,在线培训与学习服务平台,泛IC领域MOOC分享互动平台。 www.moorext.com
评论
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 202浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 61浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 69浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 92浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 106浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 222浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 116浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 141浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 119浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 164浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 58浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦