在上一篇文章中,我们讨论了失调误差如何影响单极性 ADC 的传递函数。考虑到这一点,单极 ADC 的输入只能接受正电压。相比之下,双极 ADC 的输入可以处理正电压和负电压。在本文中,我们将探讨双极性和差分 ADC 中的失调和增益误差规范;并了解失调误差的单点校准。
具有偏移二进制输出编码方案的理想三位 ADC 的传递函数如图 1 所示。
作为复习,对于偏移二进制系统,中间刻度代码的中心(在我们的示例中为 100)对应于 0 V 输入。低于 100 的代码表示负输入电压,高于 100 的数字值对应于正模拟输入。但请注意,纵轴上的代码顺序与单极 ADC 的代码顺序完全相同。穿过台阶中点的直线为我们提供了 ADC 阶梯响应的线性模型。
要注意的另一件事是,上述特性曲线也可以表示具有差分输入的单极 ADC。由于低于 100 的输出代码表示负值,因此绘制上述传递函数很有帮助,如图 2 所示。
对于具有偏移二进制编码方案的 ADC,偏移误差可以通过比较从 100…00 到 100…01 的实际中间量程转换与理想 ADC 中的相应转换来找到。如图 2 所示,这种转换在理想情况下应该发生在 +0.5 LSB。图 3 显示了一个偏移值为 -1 LSB 的三位双极性 ADC。
请注意,从 100 到 101 的中档转换发生在 +1.5 LSB 而不是 +0.5 LSB。
图 4 显示了具有正偏移的三位双极性 ADC。
在这种情况下,正输入的第一次转换发生在从 110 到 111 的 +1 LSB 处。对于理想的 ADC,该转换应该发生在 +2.5 LSB 处。因此,实际传递函数的偏移量为 +1.5 LSB。您还可以通过检查图 4 中橙色直线所示的实际传递曲线的线性模型来获得相同的结果。
与单极 ADC 类似,双极 ADC 的增益误差可以定义为在消除失调误差后实际最后一次转换与理想最后一次转换的偏差。增益误差也可以定义为实际线性模型的斜率与理想直线模型的斜率的偏差。
例如,考虑图 5 所示的特性曲线。
在本例中,点 A 和 C 分别比理想响应和实际响应的最后一个转换高 0.5 LSB。类似地,在理想和实际传输曲线上分别选择接近负满量程(0.5 LSB 低于 010 到 001 过渡)的点 B 和 D。通过 A 和 B 的线是理想响应,而通过 C 和 D 的线是系统的实际响应。可以将实际斜率与理想斜率进行比较,以确定增益误差。
在上面的示例中,理想斜率由下式给出:
在此等式中,使用了输出代码的十进制等效值。另外,请注意代码的符号。正如预期的那样,理想的斜率是 1。可以通过类似的方式找到测量的斜率:
增益误差可由以下等式定义:
这意味着测得的响应有 20% 的增益误差。使用高性能 ADC,增益误差可能小到可以用 ppm 表示。
请记住,在实践中,我们选择找到响应斜率的点不一定是传递函数的端点。根据系统中可用的测试信号和系统线性的输入范围,我们可以选择适当的点来确定传递函数的斜率。例如,在确定满量程值为 3 V 的 ADC 的斜率时,系统中已有的准确 1.5 V 输入可能被认为足够接近正满量程值。
对于单极性和双极性 ADC,失调误差会导致未使用的输入范围和未使用的输出代码。图 6 显示了负偏移如何将输入范围的下限限制为高于 -FS 的值。对于负偏移,可能也不会使用低于标称最大代码的输出代码范围。
正如您可能想象的那样,失调误差将以类似的方式影响单极 ADC 的范围。例如,考虑一个单极 12 位 ADC,其满量程电压为 2.5 V,偏移为 -8 mV。这对应于大约 -13 LSB 的偏移量。理想的直线响应向下移动了 13 LSB。因此,如图 7 所示,输入模拟范围减少了 13 LSB(或 8 mV),并且不使用最后 13 个输出代码。
重要的是要记住,更高分辨率 ADC 中的相同偏移电压会导致更大的未使用代码范围。例如,FS = 2.5 V 的 16 位 ADC 中相同的 -8 mV 偏移对应于大约 -210 LSB。在这种情况下,不使用最后的 210 个输出代码。图 8 显示了正偏移对 ADC 输入和输出范围的影响。
在这种情况下,不使用来自输出代码范围低端的一些代码,并且在小于 +FS 的输入电平处达到最大 ADC 输出。正增益误差会限制两端的输入范围,如图 9 所示。
同样,负增益误差可能导致标称范围两端的未使用输出代码(图 10)。
现在我们已经熟悉了 ADC 中的失调和增益误差概念,我们可以深入讨论这两个误差项的校准。
偏移和增益误差可以在数字域中轻松校准。为此,应将准确的模拟输入应用于 ADC 以确定实际响应。在已知实际响应的情况下,可以在数字域中校正 ADC 输出代码以匹配理想响应。
由于给定的 ADC 代码不对应于单个模拟输入值,因此只能通过测量代码转换来确定实际的 ADC 响应。这需要一个可以产生不同电压电平的精密电源。图 11 显示了可用于确定代码转换的测试设置。
在这种情况下,高分辨率数模转换器 (DAC)用于在 ADC 输入端生成不同的电压电平。DAC 应提供明显高于被测 ADC 的精度。此外,DAC 输出端的电压表可准确测量发生代码转换的电压电平。处理电压表和 ADC 的输出以确定偏移和增益误差,以及 ADC 的非线性。这种基于 PC 的方法可以使用信号平均等数字信号处理 (DSP)技术来降低 ADC 噪声对测量的影响。
在许多应用中,例如传感器测量系统,不可能使用上述设置来测量代码转换。在这些情况下,系统中可能只有一个或两个精确电压电平可用,从而实现单点或两点测量。这些测试只能近似实际响应,不能完全消除失调和增益误差。但是,它们仍然是可以显着降低偏移和增益误差的有效方法。
单点校准测量传递函数上单点的 ADC 响应,并使用结果来降低偏移误差。接地电位是用于单点校准的准确、常用的测试输入,因为它已经在系统中可用。作为应用此方法的示例,请考虑图 3 中所示的响应,为方便起见,下面将其重复,如图 12 所示。
如果我们对该 ADC 施加零电压,则输出为 011。将其与理想值 100 进行比较,我们可以确定 ADC 的偏移为 -1 LSB。另一个示例如下图 13 所示。
在这种情况下,从 010 到 011 的转变发生在零伏以下。再次将输入短接到地会产生 011。基于此单点测量,ADC 偏移为 -1 LSB。然而,考虑到代码转换,我们观察到实际偏移量为 -1.5 LSB。如您所见,通过单点测量,确定偏移的误差可能高达 ±0.5 LSB。尽管如此,这种错误在大多数应用中是可以接受的,特别是考虑到这种方法具有最低的成本和复杂性这一事实。单点测量无法确定增益误差。
一旦确定了偏移,我们可以通过从每个 ADC 读数中减去偏移来补偿它。通过地电位的单点校准只能用于双极性或差分输入 ADC。对于单极性 ADC,负偏移会导致未使用的输入值位于标称输入范围的下限。下面描述的示例(图 14)进一步阐明了这个问题。
在这种情况下,ADC 的偏移为 -13 LSB。但是,对输入施加零电压会产生全零输出代码,从而导致零电压的偏移测量不正确。这就是为什么对于单极性 ADC,我们需要 ADC 可用输入范围内的精密电压来测量和校准偏移误差。
1、深入理解SerDes(Serializer-Deserializer)之一
2、深入理解SerDes(Serializer-Deserializer)之二
3、科普:深入理解SerDes(Serializer-Deserializer)之三
4、资深工程师的ESD设计经验分享
5、干货分享,ESD防护方法及设计要点!
6、科普来了,一篇看懂ESD(静电保护)原理和设计!
7、锁相环(PLL)基本原理 及常见构建模块
8、当锁相环无法锁定时,该怎么处理的呢?
9、高性能FPGA中的高速SERDES接口
10、什么是毫米波技术?它与其他低频技术相比有何特点?
11、如何根据数据表规格算出锁相环(PLL)中的相位噪声
12、了解模数转换器(ADC):解密分辨率和采样率
13、究竟什么是锁相环(PLL)
14、如何模拟一个锁相环
15、了解锁相环(PLL)瞬态响应
16、如何优化锁相环(PLL)的瞬态响应
17、如何设计和仿真一个优化的锁相环
18、锁相环(PLL) 倍频:瞬态响应和频率合成
19、了解SAR ADC
20、了解 Delta-Sigma ADC
21、什么是数字 IC 设计?
22、什么是模拟 IC 设计?
23、什么是射频集成电路设计?
24、学习射频设计:选择合适的射频收发器 IC
25、连续时间 Sigma-Delta ADC:“无混叠”ADC
26、了解电压基准 IC 的噪声性能
27、数字还是模拟?I和Q的合并和分离应该怎么做?
28、良好通信链路性能的要求:IQ 调制和解调
29、如何为系统仿真建模数据转换器?
30、干货!CMOS射频集成电路设计经典讲义(Prof. Thomas Lee)
31、使用有效位数 (ENOB) 对 ADC 进行建模
32、以太网供电 (PoE) 的保护建议
33、保护高速接口的设计技巧
34、保护低速接口和电源电路设计技巧
35、使用互调多项式和有效位数对 ADC 进行建模
36、向 ADC 模型和 DAC 建模添加低通滤波器
37、揭秘芯片的内部设计原理和结构
38、Delta-Sigma ADCs中的噪声简介(一)
39、Delta-Sigma ADCs中的噪声简介(二)
40、Delta-Sigma ADCs 中的噪声简介(三)
41、了解Delta-Sigma ADCs 中的有效噪声带宽(一)
42、了解Delta-Sigma ADCs 中的有效噪声带宽(二)
43、放大器噪声对 Delta-Sigma ADCs 的影响(一)
44、放大器噪声对 Delta-Sigma ADCs 的影响(二)
45、参考电压噪声如何影响 Delta Sigma ADCs
46、如何在高分辨率Delta-Sigma ADCs电路中降低参考噪声
47、时钟信号如何影响精密ADC
48、了解电源噪声如何影响 Delta-Sigma ADCs
49、运算放大器简介和特性
50、使用 Delta-Sigma ADCs 降低电源噪声的影响
51、如何设计带有运算放大器的精密电流泵
52、锁定放大器的基本原理
53、了解锁定放大器的类型和相关的噪声源
54、用于降低差分 ADC 驱动器谐波失真的 PCB 布局技术
55、干货!《实用的RFIC技术》课程讲义
56、如何在您的下一个 PCB 设计中消除反射噪声
57、硅谷“八叛徒”与仙童半导体(Fairchild)的故事!
1、免费公开课:ISCAS 2015 :The Future of Radios_ Behzad Razavi
2、免费公开课:从 5 微米到 5 纳米的模拟 CMOS(Willy Sansen)
3、免费公开课:变革性射频毫米波电路(Harish Krishnaswamy)
4、免费公开课:ESSCIRC2019-讲座-Low-Power SAR ADCs
5、免费公开课:ESSCIRC2019-讲座-超低功耗接收器(Ultra-Low-Power Receivers)
6、免费公开课:CICC2019-基于 ADC 的有线收发器(Yohan Frans Xilinx)
7、免费公开课:ESSCIRC 2019-有线与数据转换器应用中的抖动
8、免费公开课:ISSCC2021 -锁相环简介-Behzad Razavi
9、免费公开课:ISSCC2020-DC-DC 转换器的模拟构建块
10、免费公开课:ISSCC2020-小数N分频数字锁相环设计
11、免费公开课:ISSCC2020-无线收发器电路和架构的基础知识(从 2G 到 5G)
12、免费公开课:ISSCC2020-从原理到应用的集成变压器基础
13、免费公开课:ISSCC2021-射频和毫米波功率放大器设计的基础
点击下方“公众号”,关注更多精彩
半导体人才招聘服务平台