双极性ADC和差分ADC中的失调误差和增益误差

摩尔学堂 2022-09-05 18:00

在上一篇文章中,我们讨论了失调误差如何影响单极性 ADC 的传递函数考虑到这一点,单极 ADC 的输入只能接受正电压。相比之下,双极 ADC 的输入可以处理正电压和负电压。在本文中,我们将探讨双极性和差分 ADC 中的失调和增益误差规范;并了解失调误差的单点校准。

传递函数——双极 ADC 理想特性曲线

具有偏移二进制输出编码方案的理想三位 ADC 的传递函数如图 1 所示。

图 1. 具有偏移二进制输出编码的理想三位 ADC 的传递函数,

作为复习,对于偏移二进制系统,中间刻度代码的中心(在我们的示例中为 100)对应于 0 V 输入。低于 100 的代码表示负输入电压,高于 100 的数字值对应于正模拟输入。但请注意,纵轴上的代码顺序与单极 ADC 的代码顺序完全相同。穿过台阶中点的直线为我们提供了 ADC 阶梯响应的线性模型。

要注意的另一件事是,上述特性曲线也可以表示具有差分输入的单极 ADC。由于低于 100 的输出代码表示负值,因此绘制上述传递函数很有帮助,如图 2 所示。

 

图 2. 显示低于 100 的输出代码的传递函数。

双极 ADC 失调误差

对于具有偏移二进制编码方案的 ADC,偏移误差可以通过比较从 100…00 到 100…01 的实际中间量程转换与理想 ADC 中的相应转换来找到。如图 2 所示,这种转换在理想情况下应该发生在 +0.5 LSB。图 3 显示了一个偏移值为 -1 LSB 的三位双极性 ADC。

请注意,从 100 到 101 的中档转换发生在 +1.5 LSB 而不是 +0.5 LSB。

 

图 3.偏移值为 -1 LSB 的三位双极 ADC 的传递函数。

图 4 显示了具有正偏移的三位双极性 ADC。

图 4. 具有正偏移的三位双极性 ADC。 

在这种情况下,正输入的第一次转换发生在从 110 到 111 的 +1 LSB 处。对于理想的 ADC,该转换应该发生在 +2.5 LSB 处。因此,实际传递函数的偏移量为 +1.5 LSB。您还可以通过检查图 4 中橙色直线所示的实际传递曲线的线性模型来获得相同的结果。

双极 ADC 增益误差

与单极 ADC 类似,双极 ADC 的增益误差可以定义为在消除失调误差后实际最后一次转换与理想最后一次转换的偏差。增益误差也可以定义为实际线性模型的斜率与理想直线模型的斜率的偏差。

例如,考虑图 5 所示的特性曲线。

 

图 5. 特性曲线示例

在本例中,点 A 和 C 分别比理想响应和实际响应的最后一个转换高 0.5 LSB。类似地,在理想和实际传输曲线上分别选择接近负满量程(0.5 LSB 低于 010 到 001 过渡)的点 B 和 D。通过 A 和 B 的线是理想响应,而通过 C 和 D 的线是系统的实际响应。可以将实际斜率与理想斜率进行比较,以确定增益误差。

在上面的示例中,理想斜率由下式给出:


在此等式中,使用了输出代码的十进制等效值。另外,请注意代码的符号。正如预期的那样,理想的斜率是 1。可以通过类似的方式找到测量的斜率:


增益误差可由以下等式定义:

这意味着测得的响应有 20% 的增益误差。使用高性能 ADC,增益误差可能小到可以用 ppm 表示。

请记住,在实践中,我们选择找到响应斜率的点不一定是传递函数的端点。根据系统中可用的测试信号和系统线性的输入范围,我们可以选择适当的点来确定传递函数的斜率。例如,在确定满量程值为 3 V 的 ADC 的斜率时,系统中已有的准确 1.5 V 输入可能被认为足够接近正满量程值。

偏移和增益误差导致未使用的输入和输出值

对于单极性和双极性 ADC,失调误差会导致未使用的输入范围和未使用的输出代码。图 6 显示了负偏移如何将输入范围的下限限制为高于 -FS 的值。对于负偏移,可能也不会使用低于标称最大代码的输出代码范围。

图 6. 显示负偏移如何将输入范围的下限限制为高于 -FS 的值的图表。

正如您可能想象的那样,失调误差将以类似的方式影响单极 ADC 的范围。例如,考虑一个单极 12 位 ADC,其满量程电压为 2.5 V,偏移为 -8 mV。这对应于大约 -13 LSB 的偏移量。理想的直线响应向下移动了 13 LSB。因此,如图 7 所示,输入模拟范围减少了 13 LSB(或 8 mV),并且不使用最后 13 个输出代码。

图 7. 显示输入模拟范围减少 13 LSB 的图表。

重要的是要记住,更高分辨率 ADC 中的相同偏移电压会导致更大的未使用代码范围。例如,FS = 2.5 V 的 16 位 ADC 中相同的 -8 mV 偏移对应于大约 -210 LSB。在这种情况下,不使用最后的 210 个输出代码。图 8 显示了正偏移对 ADC 输入和输出范围的影响。

图 8. 正偏移对 ADC 输入和输出范围的影响。

在这种情况下,不使用来自输出代码范围低端的一些代码,并且在小于 +FS 的输入电平处达到最大 ADC 输出。正增益误差会限制两端的输入范围,如图 9 所示。

图 9. 显示正增益误差如何限制两端输入范围的图表。

同样,负增益误差可能导致标称范围两端的未使用输出代码(图 10)。


图 10. 负增益误差如何导致标称范围两端未使用的输出代码。

现在我们已经熟悉了 ADC 中的失调和增益误差概念,我们可以深入讨论这两个误差项的校准。

ADC 增益和偏移校准

偏移和增益误差可以在数字域中轻松校准。为此,应将准确的模拟输入应用于 ADC 以确定实际响应。在已知实际响应的情况下,可以在数字域中校正 ADC 输出代码以匹配理想响应。

由于给定的 ADC 代码不对应于单个模拟输入值,因此只能通过测量代码转换来确定实际的 ADC 响应。这需要一个可以产生不同电压电平的精密电源。图 11 显示了可用于确定代码转换的测试设置。

图 11. 用于确定代码转换的示例测试设置 图片由Analog Devices提供。

在这种情况下,高分辨率数模转换器 (DAC)用于在 ADC 输入端生成不同的电压电平。DAC 应提供明显高于被测 ADC 的精度。此外,DAC 输出端的电压表可准确测量发生代码转换的电压电平。处理电压表和 ADC 的输出以确定偏移和增益误差,以及 ADC 的非线性。这种基于 PC 的方法可以使用信号平均数字信号处理 (DSP)技术来降低 ADC 噪声对测量的影响。

在许多应用中,例如传感器测量系统,不可能使用上述设置来测量代码转换。在这些情况下,系统中可能只有一个或两个精确电压电平可用,从而实现单点或两点测量。这些测试只能近似实际响应,不能完全消除失调和增益误差。但是,它们仍然是可以显着降低偏移和增益误差的有效方法。

偏移校准——单点校准

单点校准测量传递函数上单点的 ADC 响应,并使用结果来降低偏移误差。接地电位是用于单点校准的准确、常用的测试输入,因为它已经在系统中可用。作为应用此方法的示例,请考虑图 3 中所示的响应,为方便起见,下面将其重复,如图 12 所示。

图 12. 图 3 的重复显示了偏移值为 -1 LSB 的三位双极性 ADC 的传递函数。

如果我们对该 ADC 施加零电压,则输出为 011。将其与理想值 100 进行比较,我们可以确定 ADC 的偏移为 -1 LSB。另一个示例如下图 13 所示。

图 13. 显示在 ADC 上施加零电压后 ADC 偏移为 -1 LSB 的示例。

在这种情况下,从 010 到 011 的转变发生在零伏以下。再次将输入短接到地会产生 011。基于此单点测量,ADC 偏移为 -1 LSB。然而,考虑到代码转换,我们观察到实际偏移量为 -1.5 LSB。如您所见,通过单点测量,确定偏移的误差可能高达 ±0.5 LSB。尽管如此,这种错误在大多数应用中是可以接受的,特别是考虑到这种方法具有最低的成本和复杂性这一事实。单点测量无法确定增益误差。

一旦确定了偏移,我们可以通过从每个 ADC 读数中减去偏移来补偿它。通过地电位的单点校准只能用于双极性或差分输入 ADC。对于单极性 ADC,负偏移会导致未使用的输入值位于标称输入范围的下限。下面描述的示例(图 14)进一步阐明了这个问题。

图 14. 显示负偏移的示例导致未使用的输入值处于标称输入范围的下限。 

在这种情况下,ADC 的偏移为 -13 LSB。但是,对输入施加零电压会产生全零输出代码,从而导致零电压的偏移测量不正确。这就是为什么对于单极性 ADC,我们需要 ADC 可用输入范围内的精密电压来测量和校准偏移误差。 

----------------------------------------------



1、深入理解SerDes(Serializer-Deserializer)之一

2、深入理解SerDes(Serializer-Deserializer)之二

3、科普:深入理解SerDes(Serializer-Deserializer)之三

4、资深工程师的ESD设计经验分享

5、干货分享,ESD防护方法及设计要点!

6、科普来了,一篇看懂ESD(静电保护)原理和设计!

7、锁相环(PLL)基本原理 及常见构建模块

8、当锁相环无法锁定时,该怎么处理的呢?

9、高性能FPGA中的高速SERDES接口

10、什么是毫米波技术?它与其他低频技术相比有何特点?

11、如何根据数据表规格算出锁相环(PLL)中的相位噪声

12、了解模数转换器(ADC):解密分辨率和采样率

13、究竟什么是锁相环(PLL)

14、如何模拟一个锁相环

15、了解锁相环(PLL)瞬态响应

16、如何优化锁相环(PLL)的瞬态响应

17、如何设计和仿真一个优化的锁相环

18、锁相环(PLL) 倍频:瞬态响应和频率合成

19、了解SAR ADC

20、了解 Delta-Sigma ADC

21、什么是数字 IC 设计?

22、什么是模拟 IC 设计?

23、什么是射频集成电路设计?

24、学习射频设计:选择合适的射频收发器 IC

25、连续时间 Sigma-Delta ADC:“无混叠”ADC

26、了解电压基准 IC 的噪声性能

27、数字还是模拟?I和Q的合并和分离应该怎么做?

28、良好通信链路性能的要求:IQ 调制和解调

29、如何为系统仿真建模数据转换器?

30、干货!CMOS射频集成电路设计经典讲义(Prof. Thomas Lee)

31、使用有效位数 (ENOB) 对 ADC 进行建模

32、以太网供电 (PoE) 的保护建议

33、保护高速接口的设计技巧

34、保护低速接口和电源电路设计技巧

35、使用互调多项式和有效位数对 ADC 进行建模

36、向 ADC 模型和 DAC 建模添加低通滤波器

37、揭秘芯片的内部设计原理和结构

38、Delta-Sigma ADCs中的噪声简介(一)

39、Delta-Sigma ADCs中的噪声简介(二)

40、Delta-Sigma ADCs 中的噪声简介(三)

41、了解Delta-Sigma ADCs 中的有效噪声带宽(一)

42、了解Delta-Sigma ADCs 中的有效噪声带宽(二)

43、放大器噪声对 Delta-Sigma ADCs 的影响(一)

44、放大器噪声对 Delta-Sigma ADCs 的影响(二)

45、参考电压噪声如何影响 Delta Sigma ADCs

46、如何在高分辨率Delta-Sigma ADCs电路中降低参考噪声

47、时钟信号如何影响精密ADC

48、了解电源噪声如何影响 Delta-Sigma ADCs

49、运算放大器简介和特性

50、使用 Delta-Sigma ADCs 降低电源噪声的影响

51、如何设计带有运算放大器的精密电流泵

52锁定放大器的基本原理

53了解锁定放大器的类型和相关的噪声源

54、用于降低差分 ADC 驱动器谐波失真的 PCB 布局技术

55、干货!《实用的RFIC技术》课程讲义

56、如何在您的下一个 PCB 设计中消除反射噪声

57、硅谷“八叛徒”与仙童半导体(Fairchild)的故事!

                                                                                                    

往期精彩课程分享


1、免费公开课ISCAS 2015 :The Future of Radios_ Behzad Razavi

2、免费公开课:从 5 微米到 5 纳米的模拟 CMOS(Willy Sansen)

3、免费公开课:变革性射频毫米波电路(Harish Krishnaswamy)

4、免费公开课:ESSCIRC2019-讲座-Low-Power SAR ADCs

5、免费公开课:ESSCIRC2019-讲座-超低功耗接收器(Ultra-Low-Power Receivers)

6、免费公开课:CICC2019-基于 ADC 的有线收发器(Yohan Frans Xilinx)

7、免费公开课:ESSCIRC 2019-有线与数据转换器应用中的抖动

8、免费公开课:ISSCC2021 -锁相环简介-Behzad Razavi

9、免费公开课:ISSCC2020-DC-DC 转换器的模拟构建块

10、免费公开课:ISSCC2020-小数N分频数字锁相环设计

11、免费公开:ISSCC2020-无线收发器电路和架构的基础知识(从 2G 到 5G)

12、免费公开课:ISSCC2020-从原理到应用的集成变压器基础

13、免费公开课:ISSCC2021-射频和毫米波功率放大器设计的基础



点击下方“公众号”,关注更多精彩



专注于半导体人才培训,在线学习服务平台!



半导体人才招聘服务平台

摩尔学堂 摩尔学堂专注于半导体人才培训,在线培训与学习服务平台,泛IC领域MOOC分享互动平台。 www.moorext.com
评论
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 47浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 55浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 53浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 58浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 84浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 111浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 55浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 107浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 79浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 93浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 54浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 65浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 43浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 155浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦