后摩尔时代,它有望成为最佳半导体材料

制造界 2022-09-05 12:57


来源:半导体行业观察  作者:science

图片/图虫创意思  作者/图虫创意


硅基芯片即将到达摩尔定律极限,电子产业在进入后摩尔时代,全球科学家都在寻找新一代半导体新材料。

高热导率、高电子和空穴迁移率的半导体材料对于电子和光子器件以及基础研究具有重要意义。在超高导热材料中,立方砷化硼(c-BAs:cubic boron arsenide)的电子和空穴迁移率理论上可以同时达到>1000cm²/(Vs)。尽管存在空间差异,但利用光学瞬变光栅技术,在常温条件下,我们在立方砷化硼样品的同一位置测量到了1200 W/(m·K)的热导率和1600cm²/(Vs)的双极迁移率。

以此为基础的计算表明,降低电离杂质浓度和中性杂质浓度分别是获得高迁移率和高热导率的关键。高双极迁移率的同时具有超高导热率。换而言之,立方砷化硼有望成为下一代电子产品的候选材料。


同时具有高电子和空穴迁移率以及高导热率的半导体材料有益于提升微电子和光电子器件的性能(1,2)。然而,到目前为止,仍然没有确认同时具有高迁移率和热导率的材料。

例如,应用最广泛的硅(Si)和砷化镓(GaAs),其室温电子迁移率分别为1400cm²/(VS)和8500cm²/(VS)。然而,它们在常温环境下的空穴迁移率(Si为450cm²/(VS),GaAs为400cm²/(VS)和热导率(kRT=140W/(m·K),GaAs为45W/(m·K)),这个数据低于预期。

尽管石墨烯具有高电子和空穴迁移率以及高面内热导率,但其跨面热传导较低(3,4)。金刚石虽然具有最高的RT热导率和优良的电子和空穴迁移率,但是5.4 eV的禁带宽度使其难以通过常规方式进行有效掺杂(5)。

最近,第一性原理计算(first-principles calculations)预测立方砷化硼具有极高的常温热导率(约1400 W/(m·K)),这个数字是Si的10倍。这一高值源于其不寻常的声子散射和化学键性质,它们同时促进弱三声子(weak three-phonon)和四声子散射(four phonon scattering)。这一预测现已被实验证实,而在kRT = 1000-1300 W/(m·K)范围内测量到的立方砷化硼热导率表明,立方砷化硼是除金刚石外导热率最高的半导体材料。

第一性原理计算也预测了立方砷化硼应该同时具有较高的常温电子和空穴迁移率,μe =1400cm²/(VS),μh=2100cm²/(VS)。造成这种高电子和空穴迁移率的主要原因是立方砷化硼中极性光学声子的高能量和低占据,这带来了弱载流子散射。这一特性将立方砷化硼与其他III-V半导体材料区分开,除了AlSb 外(μe=200cm²/(VS)和μh= 400cm²/(VS)),其他III-V半导体具有较高的电子迁移率,但空穴迁移率低得多,其中μe/μh>10到~100,。

尽管理论预测十分出色,砷化硼的高迁移率并没有从实验测量中得到证实。与其他III-V族半导体的发展历史类似,立方砷化硼晶体的品质受到较大且不均匀的缺陷密度限制。传统的基于输运原理的测量方法(traditional bulk transport measurement methods)极大地受到缺陷密度的限制而不能获得材料本体的固有性质,因此立方砷化硼晶体中的高缺陷密度阻碍了此类测量评估预测的高迁移率的有效性。

此外,先前的研究表明,热导率和电子迁移率之间似乎没有强关联。Kim等人测量了kRT=186 W/(m·K)和μh预估为400cm²/(VS)的立方砷化硼微棒样品(microrod sample)。Chen等人测量了kRT=920 W/(m·K)和μh=22cm²/(VS)毫米尺度立方砷化硼晶体(millimeter-scale c-BAs crystals)。两者观察到的迁移率远低于计算的迁移率,且与测量的热传导率没有明显的相关性。(i)理论计算和实验之间的差异以及(ii)热性能和电性能之间解耦的原因尚未确定。

我们使用光学瞬态光栅( optical transient grating (TG))方法测量了立方砷化硼单晶同一点上的电迁移率和热导率。实验证实,立方砷化硼不但具有高热导率,同时还具备高电子和高空穴迁移率。根据理论计算,电离杂质对电荷载流子有强烈的散射作用,而中性杂质主要导致热导率降低。这些发现使立方砷化硼成为唯一已知的具有这种理想性能组合的半导体,并使其成为下一代微电子应用的理想材料。

我们在不同条件下使用多步化学蒸汽传输(multistep chemical vapor transport)制备立方砷化硼样品(18)(图S1和S2)。我们使用扫描电子显微镜(SEM)对厚度约为20 μm的立方砷化硼单晶进行成像(图1、a和B),并通过x射线衍射(XRD)确认了立方结构(图1C),与文献(19)一致。

我们使用光致发光(PL:photoluminescence)和拉曼光谱来确定立方砷化硼(17,20)中的不均匀杂质分布。我们测量了PL光谱(图1D),并对立方砷化硼晶体进行了二维(2D)PL映射(图1E)。局部亮点表明电荷载流子密度和电子与空穴复合动力学的空间差异。我们还测量了拉曼光谱(图1F),并进行了2D拉曼背景散射强度(IBG)映射(图1G)。约700cm-1处的强拉曼峰对应的是立方砷化硼区域中心处的的纵向光学(LO)模式。LO峰和IBG的半宽度可归因于杂质导致的质量无序,导致了较大的热导率的变化(11,21)。

我们使用TG技术(22-24)(图2A)同时测量多个点(图1,圆圈a至d)上的电输运和热输运。具有波矢量k1和k2的两个飞秒激光脉冲(pump)在立方砷化硼样品上产生正弦光学干涉,从而激发电子-空穴对(图S3)。第三个激光脉冲(k3;探针)在延迟时间t后到达样本点,随后沿k1−k2+k3方向衍射,并与用于外差检测的第四脉冲(k4)混合。当光激发载流子经历扩散和复合时,相应的衍射信号随时间衰减。我们在图2B和图2B中显示了计算出的立方砷化硼中随时间变化的电子-空穴分布。S4和S5。

Fig. 1. Optical characterization of c-BAs single crystals. (A) Optical photograph. (B) SEM image. (C) XRD. a.u., arbitrary units; deg, degrees. (D and E) A typical PL spectrum (D) and 2D PL intensity mapping (E) integrated over 100-nm spectrum range for each spot. The dashed circles show TG measurement spots (a to d). cps, counts per second. (F and G) A typical Raman spectrum (F) and 2D mapping of background Raman scattering intensity (G) integrated over 100 cm−1 for each spot

Fig. 2. Thermal and electron transport measurements. (A) Schematic illustration of TG experiments. (B) Calculated time-dependent electron-hole pair density in c-BAs. CB, conduction band; VB, valence band; Eg, bandgap. (C) TG signal for c-BAs. Thermal conductivity is calculated from exponential fitting (red line). (D) Wavelengthdependent electrical decay rate Ge and TG peak amplitude. (E) TG signal with varying diffraction grating periods q. (F) Electrical decay rate (Ge) and thermal decay rate (Gth) versus q2 . Error bars show experimental uncertainties

光激发载流子的扩散和复合导致TG信号的快速指数衰减(t<1ns),随后是一个较慢的热衰减(t > 1ns),其符号相反(图2C)。短时间衰减和长时间衰减可以用来分别计算同一点上的载流子迁移率和热导率(详见图S6)。通过长时间衰减(红线)的指数拟合直接计算导热系数。

电衰减对泵浦脉冲的波长敏感,我们使用光学参量放大器(OPA)将泵浦光束的波长与立方砷化硼的带隙(2.02 eV)匹配,以避免激发高能电子,从而导致具有不同散射动力学和迁移率的热电子和空穴(25)。

我们还确定了与波长相关的电衰减率Γe和TG峰值的锁相放大器幅度(图2D)。TG在较短波长(<500nm)下衰减得更快,并在带隙附近达到一个平台(~600nm),随后光子能量在带隙(>650nm)以下出现信号损失(图S7)。

电衰变Γe和热衰变Γth相对于q2的斜率(图2,E和F)相当于立方砷化硼的双极扩散率Da和热熔性Dth。Da随后转化为双极迁移率μa=eDa/kBT=2μeμh/(μe+μh),其主要由低迁移率载流子决定,其中kB为玻尔兹曼常数,e为基本电荷,T为温度。

从a点到d点,我们测量了大量的常温热导率和双极性迁移率 (a: 920 W/(m·K)和731cm²/(VS);b: 1132W/(m·K);1482cm²/(VS);d: 211 W/(m·K)和328cm²/(VS))。这种巨大的热电性质空间差异性可以归因于相应的杂质密度的变化。较高的杂质密度会降低PL强度,增加IBG。为了证实这一趋势,我们有意在立方砷化硼样本IV中掺杂了碳,热导率和双极性迁移率测量范围分别为k=200至953 W/(m·K)和μa=195至416cm²/(VS),同时也发现了IBG的较大差异和低PL强度(图4)(S8和S9)。

立方砷化硼中常见的杂质是IV族元素,如C和Si。由于低形成能,这些杂质可以用作立方砷化硼中的电子受体(26)。由电离杂质产生的空间电荷在局部键合环境中引入畸变,驱动特定的声子散射机制。立方砷化硼的热导率可以通过求解声子玻尔兹曼输运方程来计算,包括三声子和四声子散射以及B或As位点(27、28)上中性(实线)和带电(虚线)IV族杂质的声子散射(图3A)。我们计算的k随着杂质和主体原子之间质量差的增加而减小。在杂质电离时,杂质(IV)的价电子数与B或As(III或V)的相匹配,导致比中性杂质弱的键扰动(weaker bond perturbations)。因此,电离杂质对热导率的降低要小于非电离杂质对热导率的降低,特别是当被取代的杂质具有与主体原子类似的质量时,即Ge–As和C+B 。

Fig. 3. Theoretical calculation of the impurity effects on thermal conductivity and mobility. (A and B) Calculated thermal conductivity (A) and ambipolar mobility (B) with neutral (solid lines) and charged (dashed lines) group IV impurities. Open circles are mh values of bulk samples measured by electrical probes (fig. S12). (C) Calculated electron-phonon and short- and long-range impurity scattering rates for holes. Zero of energy is at the valence band maximum. Si– As ¼ 1018cm3. (D) Thermal conductivity (solid lines) and mobility (dashed lines) differences between charged and neutral impurities

杂质的键微扰(bond perturbation)和库仑势(Coulomb potential)对立方砷化硼中的电子和空穴传输动力学有不同的影响。基于计算带电杂质形成能的最新进展(29),我们使用从头计算方法来研究IV族杂质对立方砷化硼常温双极性迁移率的影响(图3B)。我们展示了含的立方砷化硼中空穴的电子-声子散射和长程和短程缺陷散射(详见图S10)(图3C)。在带边附近,与带电杂质的长程库仑相互作用是主要的散射机制。中性杂质缺乏库仑电势会导致较弱的载流子散射,导致μa在浓度接近1018 cm-3时才下降,此时电子-中性杂质散射开始显示影响。然而,无论杂质的质量如何,带电杂质的μa从1016 cm−3显著降低。

我们阐明了中性杂质和带电杂质对k和μa的不同影响(图3D)。与带电杂质相比,中性杂质更强烈地抑制k,因为键扰动更强(27)。由于库仑散射,不管质量如何,带电杂质主要有助于μa还原。质量与主原子相似的带电杂质将表现出常温热导率高于1000 W/(m·K),即使在1019cm−3的高杂质密度下,且μa显著降低至低于400cm²/(VS).中等水平1018cm−3。

我们还可以突出k和μa与批次0至IV的中性和带电杂质的对比趋势(图4A和表S1)(18)。图4中的实线和虚线分别显示了中性Si0 As和带电Si–As计算的μa和k轨迹,从1016到1020 cm−3。散射点是不同批次样品的测量μa和k值,用不同颜色标记。所有测量数据都拟合到轨迹曲线之间的区域中。

在高质量立方砷化硼批次(III)中,我们测量得到的μa=1600±170cm²/(VS),k=1200±130 W/(m·K).我们还测量了高质量样品的两个不同点(III-a和III-b)的温度相关μa(图S11),测得的III-a的μa与计算结果一致(图4B)。散装样品(the bulk samples)的的霍尔测量提供了μh和载流子浓度p,其在整个样品上具有空间变化的杂质浓度。图3B中绘制的测量体μh(详细信息参见图S12)受到平均杂质浓度的限制,而不是杂质含量低的局部点。

Fig. 4. Ambipolar mobility and thermal conductivity of c-BAs. (A) Measured mobility and thermal conductivity of c-BAs from different batches (batches 0, I, II, III, and IV). See table S1 for details. The solid and dashed lines show the calculated ma and k with varying concentrations of neutral Si0 As and charged Si– As, respectively. Typical uncertainties for ma and k are 11%. (B) Temperaturedependent ambipolar mobility of c-BAs (III-a and III-b). The solid and dashed lines show calculated ma of pristine c-BAs and Si, respectively (32).

高空间分辨率的热重测量为立方砷化硼中同时存在高电子和空穴迁移提供了明确的证据,并表明通过消除缺陷和杂质,立方砷化硼可以表现出高的热导率和高电子和空穴迁移率。此外,观察到的局部热导率和迁移率之间的微弱相关性是由中性和电离杂质对这些量的不同影响造成的。这种电子和热性能的显著结合,以及与常见半导体(如Si和GaAs)密切匹配的热膨胀系数和晶格常数(30,31),使立方砷化硼成为一种有前景的,可以用于集成当前和未来半导体制造工艺的材料,并能够解决下一代电子在热管理方面的挑战。

备注:感谢复旦大学工程与应用技术研究院雷光寅博士的审核与指导。

作者

Jungwoo Shin, Geethal Amila Gamage, Zhiwei Ding, Ke Chen, Fei Tian , Xin Qian, Jiawei Zhou, Hwijong Lee, Jianshi Zhou , Li Shi , Thanh Nguyen , Fei Han , Mingda Li , David Broido , Aaron Schmidt , Zhifeng Ren *, Gang Chen


参考文献和注释

1. X. Qian, J. Zhou, G. Chen, Nat. Mater. 20, 1188–1202 (2021).
2. G. Chen, Nat. Rev. Phys. 3, 555–569 (2021).
3. K. S. Novoselov et al., Science 306, 666–669 (2004).
4. A. A. Balandin et al., Nano Lett. 8, 902–907 (2008).
5. C. J. H. Wort, R. S. Balmer, Mater. Today 11, 22–28 (2008).
6. L. Lindsay, D. A. Broido, T. L. Reinecke, Phys. Rev. Lett. 111, 025901 (2013).
7. D. A. Broido, L. Lindsay, T. L. Reinecke, Phys. Rev. B 88, 214303 (2013).
8. T. L. Feng, L. Lindsay, X. L. Ruan, Phys. Rev. B 96, 161201 (2017).
9. J. S. Kang, M. Li, H. Wu, H. Nguyen, Y. Hu, Science 361, 575–578 (2018).
10. F. Tian et al., Science 361, 582–585 (2018).
11. S. Li et al., Science 361, 579–581 (2018).
12. T. H. Liu et al., Phys. Rev. B 98, 081203 (2018).
13. D. L. Rode, Phys. Rev. B 3, 3287–3299 (1971).
14. A. Nainani, B. R. Bennett, J. B. Boos, M. G. Ancona, K. C. Saraswat, J. Appl. Phys. 111, 103706 (2012).
15. J. I. Pankove, T. D. Moustakas, Semicond. Semimet. 50, 1–10 (1997).
16. J. Kim et al., Appl. Phys. Lett. 108, 201905 (2016).
17. X. Chen et al., Chem. Mater. 33, 6974–6982 (2021).
18. Materials and methods are available as supplementary materials online.
19. J. A. Perri, S. Laplaca, B. Post, Acta Cryst. 11, 310 (1958).
20. S. Yue et al., Mater. Today Phys. 13, 100194 (2020).
21. A. Rai, S. Li, H. L. Wu, B. Lv, D. G. Cahill, Phys. Rev. Mater. 5, 013603 (2021).
22. A. A. Maznev, T. F. Crimmins, K. A. Nelson, Opt. Lett.
23, 1378–1380 (1998). 23. A. A. Maznev, K. A. Nelson, J. A. Rogers, Opt. Lett. 23, 1319–1321 (1998).
24. S. Huberman et al., Science 364, 375–379 (2019).
25. K. Chen et al., Carbon 107, 233–239 (2016).
26. J. L. Lyons et al., Appl. Phys. Lett. 113, 251902 (2018).
27. M. Fava et al., Npj Comput. Mater. 7, 54 (2021).
28. M. Fava et al., How dopants limit the ultrahigh thermal conductivity of boron arsenide: A first principles study, version 1, Zenodo (2021); https://doi.org/10.5281/zenodo.4453192.
29. C. Freysoldt et al., Rev. Mod. Phys. 86, 253–305 (2014).
30. F. Tian et al., Appl. Phys. Lett. 114, 131903 (2019).
31. X. Chen et al., Phys. Rev. Appl. 11, 064070 (2019). 32. N. D. Arora, J. R. Hauser, D. J. Roulston, IEEE Trans. Electron Dev. 29, 292–295 (1982).


联系我们:qqmm-777(值班微信)广告及商务合作:电话15053167995投稿及采访约谈:邮箱447377407@qq.com
版权声明:制造界除发布原创文章外,亦致力于优秀文章的交流分享。转载须注明文章来源和作者;申请转载授权请在文末或后台留言。版权所有,违者必究。
制造界 专注服务中国制造企业。企业家的思想库,创业者的工具箱。
评论 (0)
  • 由西门子(Siemens)生产的SIMATIC S7 PLC在SCADA 领域发挥着至关重要的作用。在众多行业中,SCADA 应用都需要与这些 PLC 进行通信。那么,有哪些高效可行的解决方案呢?宏集为您提供多种选择。传统方案:通过OPC服务器与西门子 PLC 间接通信SIMATIC S7系列的PLC是工业可编程控制器,能够实现对生产流程的实时SCADA监控,提供关于设备和流程状态的准确、最新数据。S7Comm(全称S7 Communication),也被称为工业以太网或Profinet,是西门
    宏集科技 2025-04-10 13:44 76浏览
  • 行业变局:从机械仪表到智能交互终端的跃迁全球两轮电动车市场正经历从“功能机”向“智能机”的转型浪潮。数据显示,2024年智能电动车仪表盘渗透率已突破42%,而传统LED仪表因交互单一、扩展性差等问题,难以满足以下核心需求:适老化需求:35%中老年用户反映仪表信息辨识困难智能化缺口:78%用户期待仪表盘支持手机互联与语音交互成本敏感度:厂商需在15元以内BOM成本实现功能升级在此背景下,集成语音播报与蓝牙互联的WT2605C-32N芯片方案,以“极简设计+智能交互”重构仪表盘技术生态链。技术破局:
    广州唯创电子 2025-04-11 08:59 121浏览
  •   海上电磁干扰训练系统:全方位解析      海上电磁干扰训练系统,作为模拟复杂海上电磁环境、锻炼人员应对电磁干扰能力的关键技术装备,在军事、科研以及民用等诸多领域广泛应用。接下来从系统构成、功能特点、技术原理及应用场景等方面展开详细解析。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   一、系统构成   核心组件   电磁信号模拟设备:负责生成各类复杂的电磁信号,模拟海上多样
    华盛恒辉l58ll334744 2025-04-10 16:45 91浏览
  • 背景近年来,随着国家对资源、能源有效利用率的要求越来越高,对环境保护和水处理的要求也越来越严格,因此有大量的固液分离问题需要解决。真空过滤器是是由负压形成真空过滤的固液分离机械。用过滤介质把容器分为上、下两层,利用负压,悬浮液加入上腔,在压力作用下通过过滤介质进入下腔成为滤液,悬浮液中的固体颗粒吸附在过滤介质表面形成滤饼,滤液穿过过滤介质经中心轴内部排出,达到固液分离的目的。目前市面上的过滤器多分为间歇操作和连续操作两种。间歇操作的真空过滤机可过滤各种浓度的悬浮液,连续操作的真空过滤机适于过滤含
    宏集科技 2025-04-10 13:45 69浏览
  • 文/Leon编辑/侯煜‍关税大战一触即发,当地时间4月9日起,美国开始对中国进口商品征收总计104%的关税。对此,中国外交部回应道:中方绝不接受美方极限施压霸道霸凌,将继续采取坚决有力措施,维护自身正当权益。同时,中国对原产于美国的进口商品加征关税税率,由34%提高至84%。随后,美国总统特朗普在社交媒体宣布,对中国关税立刻提高至125%,并暂缓其他75个国家对等关税90天,在此期间适用于10%的税率。特朗普政府挑起关税大战的目的,实际上是寻求制造业回流至美国。据悉,特朗普政府此次宣布对全球18
    华尔街科技眼 2025-04-10 16:39 80浏览
  • ‌亥姆霍兹线圈‌是由两组相同的线圈组成,线圈之间的距离等于它们的半径。当电流同时流过这两个线圈时,会在它们中间形成一个几乎均匀的磁场。这种设计克服了普通线圈磁场不均匀的缺陷,能够在中心区域形成稳定、均匀的磁场‌。‌亥姆霍兹线圈的应用领域‌包括材料、电子、生物、医疗、航空航天、化学、应用物理等各个学科。由于其操作简便且能够提供极微弱的磁场直至数百高斯的磁场,亥姆霍兹线圈在各研究所、高等院校及企业中被广泛用于物质磁性或检测实验。‌亥姆霍兹线圈可以根据不同的标准进行分类‌:‌按磁场方向分类‌:‌一维亥
    锦正茂科技 2025-04-09 17:20 134浏览
  • 什么是车用高效能运算(Automotive HPC)?高温条件为何是潜在威胁?作为电动车内的关键核心组件,由于Automotive HPC(CPU)具备高频高效能运算电子组件、高速传输接口以及复杂运算处理、资源分配等诸多特性,再加上各种车辆的复杂应用情境等等条件,不难发见Automotive HPC对整个平台讯号传输实时处理、系统稳定度、耐久度、兼容性与安全性将造成多大的考验。而在各种汽车使用者情境之中,「高温条件」就是你我在日常生活中必然会面临到的一种潜在威胁。不论是长时间将车辆停放在室外的高
    百佳泰测试实验室 2025-04-10 15:09 70浏览
  •   天空卫星健康状况监测维护管理系统:全方位解析  在航天技术迅猛发展的当下,卫星在轨运行的安全与可靠至关重要。整合多种技术,实现对卫星的实时监测、故障诊断、健康评估以及维护决策,有力保障卫星长期稳定运转。  应用案例       系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。  一、系统架构与功能模块  数据采集层  数据处理层  智能分析层  决策支持层  二、关键技术  故障诊断技术  
    华盛恒辉l58ll334744 2025-04-10 15:46 62浏览
  •   卫星故障预警系统软件:卫星在轨安全的智能护盾   北京华盛恒辉卫星故障预警系统软件,作为确保卫星在轨安全运行的关键利器,集成前沿的监测、诊断及预警技术,对卫星健康状况予以实时评估,提前预判潜在故障。下面将从核心功能、技术特性、应用场景以及发展走向等方面展开详尽阐述。   应用案例   目前,已有多个卫星故障预警系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星故障预警系统。这些成功案例为卫星故障预警系统的推广和应用提供了有力支持。   核心功能   实时状态监测:
    华盛恒辉l58ll334744 2025-04-09 19:49 159浏览
  • 技术原理:非扫描式全局像的革新Flash激光雷达是一种纯固态激光雷达技术,其核心原理是通过面阵激光瞬时覆盖探测区域,配合高灵敏度传感器实现全局三维成像。其工作流程可分解为以下关键环节:1. 激光发射:采用二维点阵光源(如VCSEL垂直腔面发射激光器),通过光扩散器在单次脉冲中发射覆盖整个视场的面阵激光,视场角通常可达120°×75°,部分激光雷达产品可以做到120°×90°的超大视场角。不同于传统机械扫描或MEMS微振镜方案,Flash方案无需任何移动部件,直接通过电信号控制激光发射模式。2.
    robolab 2025-04-10 15:30 87浏览
  • 行业痛点:电动车智能化催生语音交互刚需随着全球短途出行市场爆发式增长,中国电动自行车保有量已突破3.5亿辆。新国标实施推动行业向智能化、安全化转型,传统蜂鸣器报警方式因音效单一、缺乏场景适配性等问题,难以满足用户对智能交互体验的需求。WT2003HX系列语音芯片,以高性能处理器架构与灵活开发平台,为两轮电动车提供从基础报警到智能交互的全栈语音解决方案。WT2003HX芯片技术优势深度解读1. 高品质硬件性能,重塑语音交互标准搭载32位RISC处理器,主频高达120MHz,确保复杂算法流畅运行支持
    广州唯创电子 2025-04-10 09:12 163浏览
  •     前几天同事问我,电压到多少伏就不安全了?考虑到这位同事的非电专业背景,我做了最极端的答复——多少伏都不安全,非专业人员别摸带电的东西。    那么,是不是这么绝对呢?我查了一下标准,奇怪的知识增加了。    标准的名字值得玩味——《电流对人和家畜的效应》,GB/T 13870.5 (IEC 60749-5)。里面对人、牛、尸体分类讨论(搞硬件的牛马一时恍惚,不知道自己算哪种)。    触电是电流造成的生理效应
    电子知识打边炉 2025-04-09 22:35 175浏览
  • 政策驱动,AVAS成新能源车安全刚需随着全球碳中和目标的推进,新能源汽车产业迎来爆发式增长。据统计,2023年中国新能源汽车渗透率已突破35%,而欧盟法规明确要求2024年后新能效车型必须配备低速提示音系统(AVAS)。在此背景下,低速报警器作为车辆主动安全的核心组件,其技术性能直接关乎行人安全与法规合规性。基于WT2003H芯片开发的AVAS解决方案,以高可靠性、强定制化能力及智能场景适配特性,正成为行业技术升级的新标杆。WT2003H方案技术亮点解析全场景音效精准触发方案通过多传感器融合技术
    广州唯创电子 2025-04-10 08:53 179浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦