红外高光谱遥感成像的技术发展与气体探测应用

MEMS 2022-09-05 00:00

相对可见光和短波红外谱段来说,在红外谱段进行高光谱遥感成像具有独特优势,特别是在资源勘查、地表环境监测、大气环境监测、军事侦察方面。尽管当前红外高光谱成像仪主要以机载为主,还未实现星载,然而国内外相关机构从未放弃推进红外高光谱遥感的星载化。

据麦姆斯咨询报道,近期,中国科学院上海技术物理研究所李春来和王建宇研究员团队在《红外与激光工程》期刊上发表了题为“红外高光谱遥感成像的技术发展与气体探测应用”的文章。第一作者为李春来研究员,主要从事空间红外与光谱技术方面的研究。通讯作者为王建宇研究员(中国科学院院士),主要从事空间光电技术和系统方面的研究。

文中以红外高光谱成像仪的技术发展为主题,首先介绍了了国内外红外高光谱成像仪的发展历程,总结了红外高光谱成像传感器的特色和难点,并探讨了可能的解决途径。在此基础上,介绍了红外高光谱成像在气体探测中的机理、模型和部分实例,指出红外高光谱成像技术是未来有望解决大气环境精细监测和工业领域应急管理最有利的手段之一。最后,还展望了红外高光谱成像技术的发展趋势。

红外高光谱成像传感器的发展

传统的高光谱成像遥感一般指覆盖0.4~2.5μm的高光谱成像仪,传感器接收的能量主要是地表反射的太阳辐射。红外高光谱则通常覆盖3.0~12.5μm谱段的高光谱成像仪。不同于0.4~2.5μm谱段的高光谱成像仪围绕精细分光组件和高性能面阵探测器的发展而开展,红外高光谱成像仪的发展则重点关注如何抑制红外背景辐射。从成像仪的组成来说,抑制红外辐射的低温制冷模块和红外分光模块占据了主要空间和质量。在高光谱成像仪传感器的发展史上,早期的仪器主要集中于欧美国家。

国内外典型传感器

1986年,美国国家航空航天局(NASA)下属的喷气动力实验室(JPL)成功研制经典仪器机载可见光近红外成像光谱(AVIRIS),相比传统多光谱的遥感,AVIRIS在光谱解析方面表现出了巨大优势,推动了遥感定量化的发展。随着实际应用的深入,地质勘查科学家们也逐渐意识到仅依靠0.4~2.5μm的反射光谱在解析全部地表矿物种类方面仍有提升空间,红外高光谱成像仪便应运而生。

我国红外高光谱遥感的发展要晚于欧美国家。从“十五”计划开始,国家科技部开始支持热红外高光谱成像技术研究。“十二五”期间,在科技部的支持下,中国科学院上海技术物理研究所研制了我国第一台热红外高光谱成像仪样机。在“高分”专项航空全谱段多模态成像光谱仪项目的支持下,项目组进一步完善了热红外高光谱成像样机的工程化水平,形成了机载热红外高光谱成像系统(ATHIS)。在原有技术体系基础上,2020年,项目组成功研制了空间高分辨红外高光谱成像仪(SIHIS)的研制,SIHIS覆盖了包括中波(3~5μm)和长波(8~12.5μm)的红外区主要大气窗口。

图1 国内外主要红外高光谱成像仪照片

技术发展趋势

从光谱分辨率来看,已有的大部分红外高光谱成像仪光谱分辨率均在50nm附近,该指标在地矿领域可以满足矿物精确解析的需求。当需要开展气体探测时,光谱分辨率一般要优于20nm,并且光谱绝对精度要优于1nm。

从空间分辨率来看,机载设备的空间分辨率一般在毫弧度级,星载仪器方面,太阳同步星载的空间分辨率一般在10~50m分辨率量级。

从辐射分辨率来看,对于光栅分光的仪器来说,采用液氮或液氦制冷的仪器辐射分辨率一般都优于0.1K,采用斯特林制冷的仪器一般在0.1~0.2K之间,采用傅里叶分光技术体制的仪器的辐射灵敏度一般都好于光栅分光体制的仪器。在成像波段方面,中波红外的辐射分辨率一般都优于长波波段。

总体来说,目前已有的红外高光谱成像技术,其光谱分辨率和空间分辨率已基本能满足地矿领域的应用需求,但在光谱分辨率要求更高的气体探测领域仍然有较大应用需求驱动。在民用领域,目前发展的基于无人机平台的非制冷探测器型红外高光谱成像仪,辐射分辨率往往只能到1K量级,在很多领域都难以应用。

综上所述,红外高光谱成像仪的发展应继续集中在突破红外精细分光、低暗电流高灵敏度探测器、低温光学与背景辐射抑制技术,研制出体积质量更小,光谱分辨率、空间分辨率、辐射分辨率更加优异的传感器。

红外高光谱成像气体探测

在几乎所有的红外高光谱成像技术的有关研制和应用报道中,地质勘探和大气环境监测都是必不可少的需求。红外高光谱成像可以在远距离、大范围的约束下实现对气体的种类、形态、浓度等进行综合探测,尤其是具备几何形态的成像能力,相比傅里叶红外光谱,在精细环境监测领域具有独特优势。

红外高光谱气体探测机理

当红外谱段的光线穿透气体时,如果入射红外光由频率决定的光子能量与气体分子中两能级的能量之差相等时,气体分子将吸收光子能量,从初始能级跃迁到能量更高的能级,从而使得入射红外光的特定频率成份被吸收,也使得不同成份的气体拥有不同的气体吸收光谱。几乎所有的气体都有这样的“指纹”光谱谱线,这也是光学手段开展气体成份识别的基本物理原理,图2给出了不同气体成份对应的红外吸收光谱谱线。

图2 不同气体红外吸收光谱

气体烟羽检测与浓度反演

理想的红外气体探测过程以朗伯定律作为基本定律,只要背景和气体存在温差,就可实现探测。如图3和4所示,红外高光谱探测气体的方式主要有空基和地基两种。空基探测一般是直视或斜视,地基探测一般水是平观测。无论采用哪种探测方式,它们的辐射传输过程都基本相同。

图3 空基平台气体烟羽探测示意图

图4 地基平台气体烟羽探测示意图

红外高光谱成像气体探测效果

目前,比较成熟的主要是红外高光谱成像技术的简化版——红外多光谱成像技术产品,如美国的Rebellion GCI(Gas Cloud Imaging),其时间分辨率可以达到15Hz,已接近视频级。红外高光成像仪则更多的是用于实验测试研究。图5展示了MAKO、HyTES和ATHIS在气体探测方面的应用案例。

图5 红外高光谱成像仪气体探测的实际案例

结束语

尽管存在诸多问题,经过20多年的发展,红外高光谱成像技术已取得了重要成果。行百里者半九十,作为一种通用的高技术遥感手段,在未实现星载传感器的全球定量观测前都不能算是质的飞越。随着应用需求的推进,特别是目前我国“双碳”计划的深入实施,对大气环境的精细监测需求越来越迫切,未来红外高光谱成像技术的发展将由技术推进型逐步迈向应用推进型。一方面,突破红外精细分光、低暗电流红外面阵探测器、深低温光学系统等核心技术,研制出光谱分辨率达到甚至超过λ/500的星载高性能遥感仪器,获取可用的星载高光谱红外遥感数据。另一方面,继续深挖红外高光谱遥感数据处理,拓展应用模式,深入研究红外高光谱信息与待探测物质成分的深入内在物理联系,提升探测准确度。在大数据分析技术飞速发展的今天,红外高光谱成像技术将大有可为。

该项目获得了173基础研究重点项目和上海市科学仪器研发专项的资助。

延伸阅读:
《气体传感器技术及市场-2022版》
《盛思锐气体传感器SGP40产品分析》

《盛思锐气体传感器SGP30产品分析》


MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论 (0)
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 145浏览
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 71浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 152浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 124浏览
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 70浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 189浏览
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 97浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 210浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 200浏览
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 209浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 200浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦