工程师笔记|如何开发与存储位置无关的STM32应用

STM32单片机 2022-09-02 17:30

关键词:PIC, PIE,位置

1、前言

最近有客户询问,能否使用 STM32CubeIDE 在编译时通过设置某个编译选项,让STM32 应用与存储位置无关。这样的优势是能使同一个固件被烧在 STM32 Flash 里的不同位置, 而在系统 Bootloader 里只需要跳到相应的位置就可以正常执行固件代码。客户希望STM32 代码从 Flash 里执行,不复制到 RAM 里;客户希望是一个完整的映像,而不仅仅是其中某个函数做到了位置无关。



2、分析

在嵌入式场景下,不一定有操作系统。即使有操作系统,一般也是 RTOS。一般 RTOS没有一个通用的程序加载器。因此,存储位置无关的需求,在这时可以说无关紧要。但是,如果客户需要进行在线固件更新,例如 IoT 应用的固件升级,那么位置无关就存在价值了。位置无关之后,对于不同的软件版本,不需要频繁的为烧写位置的反复改变而修改编译链接脚本。也不需要在代码里显式的在两个 Bank 之间进行切换。


最简单的情况是所有的代码都复制到内存执行。因为 Flash 的功能只是进行存储,自然对 Flash 的位置没有任何要求。但大部分 MCU 用户面临的真实案例都是 Flash 比较大,例如 ,1M 字节 ;RAM 比较小,例如,128K 字节。在这种情况下,代码在 Flash 原地执行就是一个必须的选择。Flash 位置改变,会影响从 Bootloader 跳转之后的固件执行时的 PC 指针,也就是 PC指针值会发生相应的变化。位置无关的原理,是让应用程序经过编译后所生成的映像,其中的代码和数据,都是基于相对代码的位置进行引用。那么,当应用被搬到不同位置时,他们的相对位置不变,从而执行不受影响。


代码和数据基于绝对地址还是基于相对地址,是由编译器所决定。以客户要求的

STM32CubeIDE 编译工具为例,我们可以看到在[Project]->[Properties]->[C/C++ Build]->[Settings]->[Tool Settings]->[MCU GCC Compiler]->[Miscellaneous]已经有一项[Position Independent Code (-fPIC)]。


是否只要选一下-fPIC 选项就大功告成了呢?答案是没有那么简单。




事实上,对于完整应用程序工程,用户应该经过这些步骤将其变成位置无关:• 选择正确的编译器选项

• 去掉或者替换掉那些包含绝对位置的库文件

• 修改代码中的 Flash 绝对地址(这里以 STM32H7 的 CRC_Example 例程为例,

其他情况下有可能要修改更多) o 在 startup_xxx.s 汇编代码里的 sidata

    o 在 system_xxx.c 里的 SCB->VTOR 以及中断向量表内容

    o GOT

对于完整工程,要正确的跳转到应用程序进行执行,还需要由 Bootloader 向应用程序提供或者由应用程序在链接时自身解析计算,得到以下信息:

• Flash 偏移量

• 中断向量表的开始以及结束地址

• GOT 的开始以及结束地址


我们接下来就举例说明这些步骤。



3、步骤

3.1. 选择正确的编译器选项

如果我们不使用任何编译选项,编出来的代码会怎么样?我们可以通过.list 文件进行查看。.list 文件在 STM32 例程中默认生成,如果没有请勾选如下选项, 在 [Project]->[Properties]->[C/C++ Build]->[Settings]->[Tool Settings]->[MCU Post Build outputs]->[Generate list file],可参考下图。



我们看到代码中直接使用了变量的绝对地址,例如 0x2000 0028。我们不要被 literal pool 文字池的使用所迷惑,那个基于 PC 的操作只是为了取变量的绝对地址,例如, 0x2000 0028,并没有将绝对地址变成相对地址。

当然大家说这里是 RAM 地址,没有关系。我们选择这个函数来说明,是因为位置无关的编译器选项是不区分 RAM 还是 Flash 里的变量,而这个函数最简单容易理解。如果我们查看另外一个复杂一点的函数,例如,HAL_RCC_ClockConfig,我们可以看到以下对Flash 里变量的直接使用。这就不妙了,因为一旦改变了 Flash 下载的位置,在绝对地址处就取不出变量的真实内容了。


我们没有办法一个一个查找修改所有的变量。当然这里的变量是指全局变量。如果要修改,我们希望编译器能把他们集中在一起。对于此,编译器提供了多个编译选项。例如,PIC 是位置无关代码, PIE 是位置无关执行。PIC 和 PIE 这两者类似,但是存在一个显著的差异是 PIE 会对部分全局变量优化。我们可以观察到用两种不同编译选项的效果。


其中 80004C0 地址处包含的是 GOT 自身的偏移量,存在 r2 里,要在两次取全局变量 uwTickFreq 和 uwTick 时引用。GCC 编译器引入 GOT 全局偏移量表来解决全局变量的绝对地址的问题。在之前对绝对地址的直接使用,现在被转化成先取得 GOT 入口相对于 PC 的偏移,再获得实际变量相对于 GOT 入口的偏移,从而得到实际变量的地址。计算公式如下:


实际变量的绝对地址=PC + GOT 相对于 PC 的偏移 + 变量地址相对于 GOT 的偏移


GOT 只有一个,如果代码放在不同的位置,代码自身就可以根据 Bootloader 传递过来的信息,或者自行计算来对 GOT 进行更新。这样变量的地址就和新的 Flash 偏移相匹配。



这里可以看到 80004c0 对应的 uwTick(可以从 str 指令结合 C 语言源代码快速知道它对应于 uwTick)不再使用 GOT 偏移,而是相对于 PC 的偏移(与前文相比,多了一条指令 “add r3,pc”)。换句话说,PIE 对局部的全局变量做了优化。这个优化显然不是我们所需要的。因为如此以来,RAM 变量的地址就会随着 PC 的不同而不同。而我们则希望所有对RAM 的用法不发生变化。


为了能够修改 GOT 内容,我们选择将 GOT 最终存放在 RAM 中,导致代码中对 GOT的寻址也是使用了相对于 PC 的偏移。而因为 RAM 有限,或者因为没有虚拟内存的缘故,我们不希望 RAM 的用法有所不同,否则,可能代价很大。这时,一旦 Flash 代码位置发生变化引起 PC 指针变化,GOT 就无法找到。因此,即使我们不使用 PIE,PIC 也没有办法单独使用。为了确保没有任何存放在 RAM 里的变量的位置是相对于 PC 的偏移。我们应该使用如下所有编译选项,single-pic-base 让系统只使用一个 PIC 基址,就是下文反汇编中看到

r9;no-pic-data-is-text-relative 则让编译器不要让任何变量相对于 PC 寻址。



这样实际变量的绝对地址,就变成实际变量的绝对地址=PIC 基址 + GOT 相对于 PIC 基址的偏移 + 变量地址相对于 GOT的偏移使用以上编译选项,这样我们看到 HAL_IncTick 就如下所示:


这样所有在 RAM 里的全局变量都是相对于 GOT 的偏移。注意,这个时候你编译出来的代码现在没有办法进行测试,尽管你只是改了编译选项。这是因为 PIC 的基址需要你通过寄存器 r9 显式指定。在本例中,我们在链接脚本里如下定义 GOT 的位置:




因此,我们可以很容易的从.map 文件中获得 GOT_START 的 RAM 地址,0x2000 0000,它就是 PIC 的基址。如果想测试编译器选项是否如我们所期望,我们可以在Reset_Handler 开始部分加上如下语句(参考后文内存布局的代码): 

经过测试,我们可以确信,编译器选项的改动对我们最终执行结果没有影响。

值得注意的是,STM32 用户的代码,例如 RTOS 的移植, 也可能使用寄存器 r9。在这种情况,用户应当解决冲突。一般情况寄存器 r9 对应用程序并不是必要的。


3.2. 去掉或者替换掉那些包含绝对位置的库文件

我们要将位置无关的库去掉或者替换掉。在 STM32 参考代码里,我们需要

startup_xxx.s 里 C 库调用去掉。示例如下:


3.3. 修改 Flash 绝对地址

3.3.1. 内存布局

如果要对代码中的 Flash 绝对地址进行修改,我们需要知道存放 Flash 绝对地址的 RAM起始和结束地址,以及需要增加或减少的 Flash 偏移量。存放 Flash 绝对地址的 RAM 起始和结束地址,在编译时可以让应用代码本身借助自身链接脚本在链接时导出的变量得到,然后由应用程序在运行时存放在 RAM 中的固定位置;也可以在编译后从.map 文件或使用工具解析 elf 文件获得,然后作为应用程序一部分的元信息,例如,给应用程序加个头部存放元信息,由 Bootloader 下载并解析,将其放入到 RAM 固定位置。


我们规划在一段 RAM 里按如下顺序存放如下元信息,它可以是应用程序本身在最初阶段自我存放在这里,也可以简单的由 Bootloader 解析元信息后,跳转到应用程序之前就存放在这里。



我们在前文已经在链接脚本中定义了 GOT_START 和 GOT_END,我们还需要在链接脚本中定义 VT_START 和 VT_END。如下图所示:


如果我们希望 Bootloader 仅仅是做简单的跳转,我们可以将规划这段内存的工作,交给应用程序的初始化部分(在 “ldr sp, =_estack”之前)。假定 0x0 处对应为 0x2400 0000,参考代码如下:


3.3.2. 汇编代码

3.3.2.1. _sidata

在默认的 STM32 工程中,还有一些对变量绝对地址的使用。在 startup_xxx.s 有许多地方使用绝对地址,它们不能被编译器收集到 GOT 中。其中,默认在链接脚本里的_sidata,标志 flash 里 RAM 数据区的 Flash 位置,需要修改。



注意,变量绝对地址本身不是个问题,而对它解应用,取它的内容才会发生错误。而这里的 _sidata 是要被初始化代码使用,目的是将 Flash 的内容搬移到 RAM 里。我们显然要对_sidata 进行修改,否则无法取得正确的内容到 RAM 里。

根据前文的内存布局,我们可以把 Flash 的偏移量从内存中放置在寄存器 r8 里,例如:

 


则我们只需要一行简单的代码 “add r3,r8” 就可以修正_sidata 的地址。




3.3.3. C 代码

3.3.3.1. 公共函数

如果一段内存的数据都是硬编码,我们只需要一个公共函数就可以对其循环进行修正。我们需要知道什么样的地址之外不是 Flash 地址,那么就对这样的值不做修改。例如,我们定义 0x1fff ffff 之外的就不是 Falsh 地址,相应的宏定义如下:


3.3.3.2. SCB->VTOR

在 C 语言中如果使用赋值语句进行硬编码,编译器也无法进行收集。例如在

system_stm32xxxx.c 中的 SystemInit 有如下语句:


中断向量表相关的内容需要修改,包括两部分:

• 中断向量表的内存位置

• 中断向量表的内容

我们应该将中断向量表复制到 RAM 里,通过 UpdateOffset 函数修正其中包含的所有Flash 绝对地址的值,同时通过对 SCB->VTOR 赋值来将中断向量表的位置指向我们修改过内容的 RAM 地址。注意,VTOR 所指向的地址 VT_RAM_START 要按照 ARM 要求,根据中断总大小向上进行 2 的幂次对齐,例如,37 个字大小要使用 64 个字对齐。另外,中断向量表的内容,也包含有 RAM 地址,对此,我们并不需要修改。当然,UpdateOffset 函数已

经考虑到这一点,所以我们可以直接使用它。更新中断向量表以及 VTOR 的参考代码如下:


3.3.3.3. GOT

编译器已经将 C 语言中所有全局变量的地址都收集到 GOT 中,因此我们很容易对其Flash 地址的内容进行修正,参考代码如下:


4、总结

除非你仅仅是运行一小块代码,否则开发位置无关的 STM32 完整工程,不仅仅要设置正确的编译器选项,还要保证它所链接的预编译的库不含有绝对地址引用,要保证所有源代码里没有对绝对地址的硬编码,包括修改 data 区的 Flash 起始地址,中断向量表的内容与位置,以及 GOT 的内容。



                

© THE END



点击“阅读原文”,可下载原文档

STM32单片机 ST MCU (产品+工具+资料+技术+市场+活动)x 您的关注x您的支持 = STM32 单片机蝴蝶乐园
评论
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 138浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 75浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 81浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 87浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 81浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 47浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 49浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 101浏览
  •         霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子
    锦正茂科技 2024-12-10 11:07 64浏览
  • 本文介绍Linux系统(Ubuntu/Debian通用)挂载exfat格式U盘的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。修改对应的内核配置文件# 进入sdk目录cdrk3562_linux# 编辑内核配置文件vi./kernel-5.10/arch/arm64/configs/rockchip_linux_defconfig注:不清楚内核使用哪个defc
    Industio_触觉智能 2024-12-10 09:44 92浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 71浏览
  •         在有电流流过的导线周围会感生出磁场,再用霍尔器件检测由电流感生的磁场,即可测出产生这个磁场的电流的量值。由此就可以构成霍尔电流、电压传感器。因为霍尔器件的输出电压与加在它上面的磁感应强度以及流过其中的工作电流的乘积成比例,是一个具有乘法器功能的器件,并且可与各种逻辑电路直接接口,还可以直接驱动各种性质的负载。因为霍尔器件的应用原理简单,信号处理方便,器件本身又具有一系列的du特优点,所以在变频器中也发挥了非常重要的作用。  &nb
    锦正茂科技 2024-12-10 12:57 76浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 69浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 105浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦