入侵印刷电路板的3种方式

FPGA技术江湖 2022-08-31 08:46

2018年,《彭博商业周刊》的一篇文章做出了惊人断言,声称中国间谍部门在电路板中插入了毫米级芯片,从而在为亚马逊、苹果等公司生产的服务器中制造了后门。

这一说法遭到了相关公司和美国国土安全部直接明确的驳斥。不过,电路板的确极易遭受入侵。已经有十几个系统级攻击的例子记录在案。

我们非常了解恶意软件和伪造集成电路,而印刷电路板自身的弱点则直到现在才开始得到应有的重视。本文讲述了印刷电路板制造中的一些最突出的弱点。幸运的是,弥补这些弱点的方法相对比较简单,而且其中许多方法只需要良好的工程实践即可。

要了解电路板是如何被入侵的,有必要先回顾一下其制作过程。印刷电路板通常包含成千上万个元件。(在填充元件之前,也称为印刷线路板,即PWB。)印刷电路板的目的是提供固定元件的结构支撑,并提供元件与信号和电源连接所需要的布线。

印刷电路板的设计者首先需要创建两个电子文档:一个电路原理图和一个布局设计图。原理图描绘了所有元件及其连接方式。布局设计图描绘了完成的裸板以及物体(包括元件及其标签)在线路板上的位置,称为参考指示符。(参考指示符极为重要,大多数组装流程以及设计和采购流程都与参考指示符有关。)

一块印刷电路板并非全是元件。大多数电路板都包含空的元件封装,称“未填充元件”。这是因为电路板通常包含用于调试和测试的额外电路,或者电路板是为了实现多种目的而制造的,因此可能会有包含更多元件的版本或更少元件的版本。

检查完原理图和布局设计图后,布局设计图将被转换为一组文件。最常见的文件格式为“Gerber”,或RS-274X。它由ASCII格式的命令组成,表明电路板上的图形。第二个ASCII格式的文件为钻孔文件,显示电路板上打孔的位置。接下来,制造商会使用这些文件来创建掩模,用于蚀刻、打印和在电路板上钻孔。之后,会对电路板进行测试。

接下来,“拾取和放置”机器会把表面贴装元件放在电路板上正确的位置,然后印刷电路板会经过一个烘烤装置,所有焊料被一次性融化。之后是放置通孔元件(通常是手工放置),电路板会经过一台机器,该机器能够将焊料应用到所有的通孔销上。这是一项复杂的工作。一个8针、4电阻的网络只能覆盖2毫米×1.3毫米的区域,而且一些元件封装非常小,只有0.25毫米×0.13毫米大。随后是检查、测试、根据需要维修电路板,并进一步组装成可行的产品。

攻击可以发生在这些设计步骤中的任何一步。第一种攻击会向原理图添加额外元件。这种攻击可能是最难发现的,因为原理图通常被视为设计者意图的最准确反映,因此具有权威性。

这种攻击还有一种变化形式,即向原理图添加一个无害的元件,然后在生产中使用该元件的恶意修改版本。这类攻击使用了看似合法却含有硬件特洛伊木马的元件,虽然不在本文的讨论范围之内,但我们应严肃对待。

无论哪种情况,其对策都是仔细审查原理图,这也是在任何情况下都应该采取的措施。其中一项重要的保护措施是让其他设计团队的人员来进行检查,用他们的“新眼睛”来发现那些不必要的元件。

第二种攻击会向布局设计图添加额外元件。这个过程虽然很简单,但由于将布局设计图与原理图进行比较需要进行特定的过程检查,因此很难侥幸成功,至少需要布局技术人员伪造比较结果。要应对这种形式的攻击很简单,只需让一位工程师或一组工程师(这样更好)检查布局设计图与原理图的比较步骤并签字。

第三种类型的攻击是修改Gerber和钻孔文件。从安全角度来看,Gerber和钻孔文件有3个要点。第一,它们是ASCII格式的,因此可以在非常常见的文本编辑工具中对其进行编辑;第二,它们是人类可读的;第三,它们不包含签名或校验等的内置加密保护。由于一套完整的Gerber文件可以长达几十万行,所以这种攻击方式非常有效,很容易被漏查。

例如,攻击者可以插入一个看起来像是静电放电二极管的东西。该电路的设计文件由16个Gerber文件和钻孔文件组成。在这16个文件中,有9个文件需要修改;在这9个文件中,有7个文件总共有79行不同,还有2个文件需要修改,每个文件大约300行。后两个文件是关于电源层和接地层的信息。更加熟练的攻击(比如添加称为过孔的垂直连接)将显著减少需要重写的行数。

不受保护的Gerber文件很容易受到攻击,在设计公司和光刻掩模生产之间任一环节的入侵都可能攻击Gerber文件。由于Gerber文件以行业标准为基础,因此获取更改信息相对简单。

有人可能会说,保护文件的标准加密方法也可以保护Gerber文件。虽然这样的保护措施能在传输过程中保护Gerber文件,但文件到达目的地时这些保护措施是否有效尚不清楚。几乎所有电路板都不是由其设计公司生产的。此外,虽然大多数第三方制造商都是信誉良好的公司,但这些公司通常不会为客户记录他们为保护这些文件所采取的步骤。

还有一种保护文件的方法:以注释的形式向文件的内部内容添加数字签名、加密哈希或其他类型的验证码。不过,只有在掩模制作流程很晚才对文件进行身份验证时,这种保护才有效;理想情况是,制作光刻掩模的机器还能够对文件进行身份验证。或者,机器可以保留实际用于创建掩模的文件的加密哈希,以便制造商审核该过程。无论哪种情况,掩模制造机本身都需要安全处理。

如果这3种攻击有一种成功,不良行为者便能在组装好的电路板中添加一个实际的物理元件。这可以通过3种方式实现。

首先,可以在生产过程中添加额外元件。这很困难,因为需要改变供应链才能将元件添加到采购过程中,要对拾取和放置机器进行编程以放置该零部件,还要将一卷零部件连接到机器。换言之,这需要多个不良行为者的合作,这种共谋可能需要一个公司或一个国家才能完成。

其次,可以在维修和返工环节添加额外元件,这比生产阶段更容易实现。组装好的电路板需要手工返工很常见。例如,一个有2 000个元件的电路板的第一次通过率(零缺陷电路板的分数)可能低于70%。有缺陷的电路板需要技术人员手工添加或移除元件;一名技术人员每天可以轻松地添加几十个秘密元件。虽然不是每一块电路板都有额外元件,但攻击仍有可能成功,特别是在运输环节有同谋能将被入侵的电路板运送给目标客户时。请注意,这种攻击(修改Gerber文件、在维修环节插入元件、有选择性地运输元件)只需要3个人就能成功。

第三,可以在生产后的环节中手动向电路板添加元件,比如在仓库中。由于可能出现在途攻击,所以需要公司检查进货的电路板,以确认未填充元件仍然处于未填充状态。

知道如何破坏印刷电路板只是完成了一半的工作。攻击者还必须知道计算机主板上的最佳目标是什么。他们会尝试控制数据总线,特别是具有低数据速率和低引脚数两个共同点的数据总线。高速总线(如SATA、M.2和DDR)对数据速率非常敏感,额外元件造成的延迟很可能会使它们无法正常工作。引脚数较少的元件则更容易加入设计中;因此,引脚数较少的总线更容易成为攻击目标。在一块PC主板上,有3条这样的总线。

第一个是系统管理总线(SM总线),大多数PC主板都是通过SM总线来控制电压调节器和时钟频率的,遵守的是飞利浦半导体公司1982年制定的二线制内部集成电路(I2C)标准。这个标准没有加密,允许众多独立于CPU的连接设备直接访问关键的板载元件,例如电源。

SM总线上的秘密元件可以实现两类系统攻击。它能改变调节器的电压设置并损坏元件,还可以通过冒充另一台设备或故意干扰输入数据的方式来干扰处理器和板载传感器之间的通信。

第二个目标是串行外围接口(SPI)总线,它是摩托罗拉在20世纪80年代中期开发的一种四线总线。大多数现代闪存元件都使用这种总线,因此很可能是访问重要代码的总线,例如BIOS(基本输入/输出系统)。

针对SPI总线的精心密谋的攻击,有可能改变从附加内存芯片读取的数据的任何部分。在访问BIOS时进行的修改可能会更改开机过程中完成的硬件配置,从而为恶意代码留下一条通道。

第三个目标是LPC(Low Pin Count,低引脚计数)总线,它特别容易受到攻击,因为对其进行的攻击可以破坏计算机的操作、远程访问电源和其他重要的控制功能,并危害开机过程的安全。这条总线包含7个必选信号和6个可选信号;用于将计算机的CPU连接到传统设备(如串行和并行端口),或者连接到机箱上的物理交换机,在许多现代PC中,它的信号控制着风扇。

LPC总线非常易受攻击,因为许多服务器使用它来连接单独的管理处理器和系统。这款处理器称为基板管理控制器(BMC),即使主处理器崩溃或尚未安装操作系统,它也可以执行基本的内务管理功能。它很方便,因为它允许远程控制、维修和诊断服务器元件。大多数BMC都有一个专用的以太网端口,因此对BMC的攻击也可能影响网络访问。

BMC还有对SPI总线的直通连接,许多处理器都会通过这一通道加载BIOS。这是一个有目的的设计决策,因为它允许通过BMC对BIOS进行远程修补。

许多主板还会使用LPC总线访问实施可信平台模块(TPM)标准的硬件,TPM标准可以提供加密密钥和一系列其他服务来保护计算机及其软件。

围绕这些总线可以查找秘密元件。可以通过机器进行搜索。在自动化方面,有佛罗里达网络安全研究所(位于盖恩斯维尔)主管马克•M.特拉尼普尔(Mark M. Tehranipoor)开发的系统。该系统使用了光学扫描、显微镜、X射线断层扫描和人工智能来比较印刷电路板及其元件与原设计。或者手动搜索,包括四轮检查。虽然这些手动方法可能比较耗时,但不需要对每块单板都这样做,而且需要的专门技术也很少。

第一轮,检查电路板上是否有缺少参考指示符的元件。这是一个鲜明的信号;在正常的生产过程中,不可能制造出这种有问题的电路板。找到这样的元件很可能表明电路板的布局文件(即Gerber和钻孔文件)受到了攻击,因为这一步是最有可能在不添加参考指示符的情况下添加元件的地方。当然,没有参考指示符的元件本身也是重大设计错误,在任何情况下都值得关注。

第二轮检查中,要确保原理图、布局设计图和材料清单中包含每个参考指示符。伪造的参考指示符也明显表明有人篡改了电路板的布局文件。

第三轮检查重点关注元件封装的形状和大小。例如,如果原理图上有一个4针零件,而布局设计图或电路板上却有一个8针封装,那么这就是黑客攻击的明显证据。

第四轮应该检查电路板上所有未填充的部分。未填充的地方出现元件,这很可能真的是失误造成的,也可能是蓄意破坏的标志,因此这两种情况都需要检查。

如你所见,现代主板(有的有成千上万个微粒大小的元件)很容易遭到破坏。其中一些漏洞有可能使人得以访问重要的系统功能。实际上,简单的方法便能检测甚至阻止大多数攻击。与恶意软件一样,对问题的高度敏感度和认真仔细的审查可以阻止攻击。

作者:Samuel H. Russ、Jacob Gatlin

- End -

往期精选 

 
 

【免费】FPGA工程师人才招聘平台

FPGA人才招聘,企业HR,看过来!

系统设计精选 | 基于FPGA的实时图像边缘检测系统设计(附代码)

基于原语的千兆以太网RGMII接口设计

时序分析理论和timequest使用_中文电子版

求职面试 | FPGA或IC面试题最新汇总篇

FPGA图像处理专题课新增Vivado部分内容,线上线下均可报名

FPGA时序分析及约束专题课新增Vivado部分内容,线上线下均可报名

资料汇总|FPGA软件安装包、书籍、源码、技术文档…(2022.05.15更新)

FPGA就业班,课程内容丰富,系统性学习FPGA,高薪就业,线上线下同步,9月15日开班!

FPGA技术江湖广发江湖帖

无广告纯净模式,给技术交流一片净土,从初学小白到行业精英业界大佬等,从军工领域到民用企业等,从通信、图像处理到人工智能等各个方向应有尽有,QQ微信双选,FPGA技术江湖打造最纯净最专业的技术交流学习平台。


FPGA技术江湖微信交流群

加群主微信,备注职业+方向+名字进群


FPGA技术江湖QQ交流群

备注地区+职业+方向+名字进群


FPGA技术江湖 任何技术的学习就好比一个江湖,对于每一位侠客都需要不断的历练,从初入江湖的小白到归隐山林的隐世高人,需要不断的自我感悟自己修炼,让我们一起仗剑闯FPGA乃至更大的江湖。
评论
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 19浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 100浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 20浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 25浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 150浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 17浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 82浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 19浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 80浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 92浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 21浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦