汽车芯片研究案例

原创 智能汽车开发者平台 2022-08-29 18:00
摘要


确保将最高质量的产品运往市场,并保证它们在其生命周期内持续工作,是汽车芯片制造商的首要目标。的确,我们需要大力改进和加强制造测试程序,以使整个芯片种群中的潜在故障少之又少。然而,高质量的生产必须遵循现场可靠性;制定战略和活动来面对前方生命周期的关键问题也具有非常高的优先地位。本文的贡献包括以下几个方面的描述和结果:(1)一种非常精确的方法来评估FLASH制造测试的功耗;(2)一种有效的多核基于软件的自检生成策略,面向人工智能的计算机体系结构;(3)一个高水平和非常快速的系统级芯片的架构仿真器,用于原型设计辐照实验和预测运动结果,对处理器和外围核心的单一事件设置具有良好的准确等级。


I.简介
详细介绍了重新调整制造测试流程的最佳做法,通过考虑克服结构测试在线限制的测试技术来达到标准预期,并节省时间和计算资源来评估利用所有系统级芯片(SoC)功能的汽车应用的稳健性,包括CPU和外围核心。
第二节介绍了如何对嵌入式FLASH存储器的制造测试进行非常准确的功率表征。正如后面所详述的那样,该技术的目标是测量一个复合DfT模式的电流吸收,该模式可以通过调整固件来满足不同的期望。为了在测试执行过程中设置正确的测试电压裕度,并允许详细说明与FLASH测试并行进行的其他测试,澄清该评估是至关重要的。Infineon科技公司报告了有关嵌入式FLASH存储器测试的数据,显示了各种测试固件版本的功耗趋势。
第三节说明了如何为一个包括几个计算核心的面向人工智能的设备创建一个基于软件的自我测试套件。网表的大小和复杂性是这个方向的主要关注点;可能的自动化和巧妙的分级程序是本节讨论的关键点。Dolphin设计公司对其汽车AI芯片所报告的结果表明,基于软件的自我测试策略是可扩展的,并适用于大型多处理器设备的适当在线测试策略。然而,产生的功能测试程序可用于补充制造测试期间的结构方法,即查看系统级测试覆盖率。
第四节完成了本文所描述的方法和策略的概述。在这一部分,重点是瞬态故障的影响,并提出了一种方法来估计可能影响整个系统级芯片(SoC)的单一事件颠覆的影响。所描述的解决方案是基于一个仿真引擎,能够快速重现包括处理器和外设核心在内的SoC的行为;在特殊情况下,Xilinx Zynq UltraScale+ MPSoC是通过使用QEMU平台进行仿真的,QEMU平台是以这样一种方式进行检测的,它可以在应用程序的执行过程中注入瞬时故障效应。通过使用这样的环境,有可能获得快速、略微不准确的关于瞬态故障对功能的影响的的估计。因此,这种方法可以对辐照实验中观察到的故障水平进行原始但非常便宜的预测。

第五节得出了一些结论,并强调了汽车主题的合理看法。


II.嵌入式FLASH的功率表征测试
每个内存测试的特点是有一定的电流消耗水平。通常,这种水平在测试执行过程中不是恒定的,而且在许多情况下,峰值可能会出现在平均水平上。了解产生这些峰值的原因是很重要的,即识别相关的IR-droop问题可能会减少矫枉过正,并使更多的测试并行化,可能允许在同一时间测试不同的芯片部件,以减少测试时间。
在这些段落中,我们专注于FLASH存储器测试,特别是寻找有关所谓的 "验证测试 "技术的功率信息,该技术旨在测试存储在片上系统(SoC)中的FLASH存储器阵列。对测试步骤中的功耗水平进行认真的调查,也可以对测试条件的余量达到更高的置信度,这也是达到大批量制造质量的一个不可缺少的因素。
随着测试场景变得复杂,超出功率限制的风险也会相应增加。如今,集成在SoC中的嵌入式可测试性设计(DFT)功能可能是非常复合的,因此功率表征可能会被所有这些组件污染。为了更好地了解每个角色者在所考虑的测试场景中的贡献,调试设置变得非常重要。在接下来的段落中,我们将描述如何收集英飞凌Aurix系统在多种条件下运行时的重要功率测量数据。
图1 总体环境和工作原则
如图1所示,Aurix FLASH存储器测试涉及许多电路。高速和背对背的访问是由一个可编程的内置自检(可编程BIST)授予的,它由一个Tricore处理器核心控制。PBIST功能允许在不同条件下进行验证测试,如内部电压和频率参数。
在我们的工作中,主要调查了CPU组件行为的影响,因为它在纯PBIST功率特性方面引入了一个额外的电流消耗因素。为了识别功率峰值并确定其最大振幅,我们评估了几个CPU固件版本。图2总结了一组测量的构架:
1) 未经优化的CPU固件版本,该版本
a) 不断地轮询PBIST以获取故障信息
b) 包括调试功能,如跟踪特殊用途寄存器的读写操作
c) 实施高水平的嵌套功能,以达到重复使用的目的。
2) 减少对PBIST的轮询频率
3) 利用在轮询事件之间进入的空闲模式
4) 通过 "简化 "的代码(但不太通用)最小化上下文切换事件。
图2 固件级别探索及其利弊
图2说明了优化级别,并已经报告了一些权衡的结果。随着我们引入优化,功率消耗的峰值往往会减少很多。这是一个主要目标,但它也带来了一些重要的缺陷。在每一个优化步骤中,我们都观察到CPU固件的灵活性和可移植性的损失。同样,闲置空闲能力时。
为了进行目标测量,我们准备了图3所示的装置。安装的基础是一个开发板,包括一个用于承载芯片样本的螺丝插座。这样的板然后连接到几个控制和测量工具。
图3 实验装置
一个硬件调试器被连接到电路板上,以便主机启动和控制CPU功能的执行。
然后,电路板通过两种类型的探头连接到示波器上。电流探头用于测量测试执行过程中的电流变化:这种探针 "窥探 "了沿测试执行过程中给磁芯供电的电源线。此外,一个数字探针被用来捕捉数字引脚的值。这种操作对于确定正确的时间来观察测试流程中的功耗变化非常重要。在以下图表中,我们报告了与FLASH存储器两个连续扇区的测试有关的测量。数字探头用于识别轮询间隔,用黄色报告,而用电流探头测量的功耗趋势用蓝色报告。
图4显示了基线CPU固件的应用。我们用百分比来做一个公平的比较,在这种情况下,功率峰值振幅和测试时间是100%。
图4 CPU应用程序的基线
图5 减少轮询活动频率
图6 空闲模式激活
图7 减少了上下文切换事件
总的来说,我们观察到,有几种方法可以用来减少功率峰值的振幅,这对于安全地规划其他测试与FLASH内存测试程序的并行化至关重要。以灵活性和可移植性为代价,减少CPU的 "无用 "活动(例如,通过减少代码中对函数的嵌套调用数量来最小化上下文切换)看起来是最有效的方法,它对测试时间没有影响。

另外,基于空转的方法可以节省较少但显著的电流输入,并且对测试时间影响有限。


III.基于软件的自测试开发和AI芯片的分级
汽车的功能安全标准,如ISO26262,要求使用硬件和软件技术对潜在的故障进行现场测试。基于软件自检(SBST)的软件测试库(STL)是一种灵活的潜伏故障测试解决方案,可替代基于可测试性设计(DfT)特征的硬件方法。STL可以被集成到任务操作系统中,并在空闲时间定期执行。然而,在为基于多核处理器的人工智能芯片开发STL时,彻底优化故障分级过程和用适当的软件模块管理STL的执行是至关重要的。
在下面的小节中,描述了经典案例,STL的开发策略,以及如何将它们集成到系统中。最后,展示了故障仿真结果。
A.经典案例
该经典案例是由Dolphin Design公司开发的一个多核人工智能芯片,用于加速神经网络所需的操作(见图1)。该模块包括一个由16个PULP-NN RISC-V核(Core0 - Core15)组成的集群,有128kB的L1内存。指令是在一个与集群外的二级存储器通信的指令缓存内获取的。外部总线提供了与内部L1的通信,并可由核心0或通过DMA访问。内部总线负责连接所有的内部模块,为并发的访问提供调解。事件单元提供硬件事件来协调集群内部的操作。最后,一个共享浮点单元(FPU)包含8个计算核心,用于浮点之间的“经典”操作,以及一个用于DIV和SQRT的计算核心。
图8 多核AI设计框图的案例研究
软件开发工具包(SDK)可用于配置和编程SoC。使用SDK,用户可以决定如何安排测试和组织测试程序作为操作系统(OS)的任务。
B.STL 开发
整体的STL开发被分割成几个测生成,使用较小的故障列表。一些模块(如CPU核,或FPU共享子单元)被多次复制,可以通过专注于一个模块,然后通过在其他模块上做测试程序的移植来解决。关注每个子模块可以减少执行故障模拟和评估目标模块测试程序质量所需的时间。对于特定部件,为其他模块开发的测试产生的副作用是不可忽略的(例如,在互连的仲裁和多路复用逻辑上); 通过在目标模块上模拟这些测试程序,可以精简故障列表,减少生成时间。
测试策略包括在对RTL设计进行仔细分析后,使用伪随机和ATPG约束方法产生的模式。每个测试程序首先通过考虑所有子模块的主要输出(Pos)进行故障模拟,并细化直至达到目标故障覆盖率;最后对程序进行重新模拟,掩盖数据结果传播过程中所没有的所有POs;测试程序将测试结果压缩为一种形式的签名,保存在内存位置,并在测试结束时与预期的结果进行比较。
C.STL 集成
软件测试库的结构分三个层次,如图9所示:
1) 最底层包括用C语言和汇编开发的测试程序,以更好地运行内部模块。
2) 中间层直接与SDK进行沟通,以协调和评估整个集群内的测试操作。
3) 最高层与操作系统同时工作,在任务运行期间安排测试阶段。
图9 STL架构
为了保证稳健性,软件必须考虑到所有可能的故障,这些故障的存在会导致系统死锁:
●  当测试操作启动时,软件会使用内核软件提供的适当程序来处理上下文切换。
● 由于在失败的情况下会出现异常,所以必须修改相对处理程序,以便与影响测试结果的测试软件沟通。
●  最后,在开始测试阶段之前,必须初始化一个看门狗定时器,以便在发生不可预见的事件时强制停止测试。
测试程序的并行执行是通过在L1内存中保留一个专用空间来实现的,其中包含有关测试程序状态的参数结构。通过访问这些内存区域,可以利用内核功能在内部集群核心和外部之间进行同步操作。
D.故障模拟结果
实验是在Xeon Gold 6126工作站的4个核心上使用商用顺序故障模拟器进行的,该工作站配备128GB RAM。
在对每个集群的子模块进行故障仿真后,通过逻辑仿真验证了STL的功能;为了加快这一过程,使用RTL描述对外部芯片进行仿真,同时为集群保留门级。
表一报告了16个CPU核、FPU和互连的故障模拟结果。对于每个模块,我们报告了卡住故障的数量、故障覆盖率和故障模拟时间。
该表显示,所有内核区域的故障覆盖率都很好,共享FPU的故障覆盖率为离散值。我们通过运行为其他区块编写的测试程序来计算互连上的FC。
表二中报告了一个CPU核心(Core 0)的子模块的细节。其他CPU核显示了类似的结果,尽管故障列表有轻微的差异。

整个STL在16个CPU核心上同步运行的测试应用间在100MHz下约为8ms,大小约为20KB,这验证了在实时系统的现场测试中采用这种测试技术的可能性。


IV.用于汽车应用可靠性评估

的高级故障注入

在接下来的段落中,描述了一种基于高级软件仿真和QEMU仿真引擎,快速评估复杂SoC上单次事件颠覆(SEU)影响的方法。这一策略被用来对运行在Xilinx Ultrascale+ MPSoC上的几个应用进行分级。SEU是由电离粒子击中SoC中的敏感点(如CPU寄存器、外设寄存器或互连)而引起的位缺陷。根据执行的程序和涉及的外围模块,这些位缺陷可能会对系统造成影响。
评估SEU对运行在特定设备上的应用的影响通常是一项非常困难的任务。辐照测试,即设备在离子流下运行,是最精确的测量,但也非常昂贵。此外,在离子流下的实验失败可能会导致沉重的额外费用。无论如何,测试和可靠性工程师需要提前验证他们的实验流程,以证明准备的设置是有效的,不会导致收集无用的数据。
在这方面,基于仿真的方法近年来被广泛使用;在这种情况下,需要使用网格列表,而实验在CPU时间和内存方面要求极高,往往导致不可行。因此,进一步减轻这些初步评估成本正成为一个首要目标。我们建议采用一种替代性的模拟方法,以软件仿真为代表。软件仿真器,如QEMU引擎,运行的不是电路的一对一模型,而是程序员对设备的模型行为的精确模型,并非常迅速地再现系统的功能。
当使用仿真器时,程序员仍然可以看到用户手册中描述的所有寄存器,这些值与真实电路的行为是一致的。
这是提出的方法的出发点。我们对Xilinx Ultrascale+ MPSoC的QEMU版本进行了检测,在CPU和外围模块的寄存器中注入SEU。
图10 总体环境和工作原理
图10说明了该方法的总体情况。我们开发了一个外部管理器,它连接到QEMU进程,以启动应用程序的并监测其行为。外部管理器还负责处理SEU的注入,方法是暂停应用程序,破坏其中一个可用的资源(通过作用于主机RAM内存内容),并恢复正在运行的程序的执行,以观察故障效应是否导致故障发生。
图11进一步说明了注入流。  外部管理器暂停TA的执行并注入一个故障。然后,它恢复执行并监控结果。结果被分成三类:错误的回答、没有效果、和基于程序运行结果的超时。
图11 基于QEMU的注入方法的总体视图
重要的是要注意,故障注入不仅是在CPU寄存器上进行。我们的环境可以注入映射在设备内存中的外围寄存器。在下面的实验结果中,将看到一些破坏其中一个集成DMA的寄存器的例子。我们在一个 Fast  Fourier  Transform (FFT)程序上实验了这个设置,该程序也与它的反FFT程序相连接。我们也用它来验证关于SoC外围设备注入的环境。
图12展示了应用程序的流程。在一个循环中,执行以下一组操作:
1) 所用的CPU对给定的一系列数值执行FFT,产生结果值
2)  触发DMA传输,将FFT的结果移动到内存中的一个新位置
3)  然后通过使用转移的FFT结果执行iFFT
4) 最后将iFFT结果与原始结果进行对比测试。
如果这个最终的检查结果显示最终的数值与原来的不同,那么就有一个错误的答案。如果程序进入了循环或陷阱,那么就有一个超时。其他的所有情况下,归结为无效果。表三 包括在随机寄存器和随机时间点中注入10000个SEU的结果,这些结果收集在一个故障列表中。在注入每个SEU后,观察程序运行的结果。然后重新启动系统,继续处理故障列表中的下一个SEU。
图12 FFT+iFFT应用
从表中可以看出,注入10,000个故障需要35分钟左右,主要是因为超时的数量相对较多。此外,我们对一个神经网络应用的软件实施了注入故障,该软件经过训练,可以识别来自修改后的国家标准和技术研究所(MNIST)数据库的手写数字。
与没有错误的黄金执行相比,我们将每个做出不同猜测的执行都标记为错误答案。从表III中可以看出,神经网络似乎对SEUs很有弹性,在10,000次随机注入的CPU寄存器上,只有0.81%的错误答案。注入的时间达到89分钟。这是由于要执行的程序的复杂性,以及发现的超时次数造成的。
作为最终数字的验证,并了解用QEMU模拟得到的结果是否能代表辐照测试结果,我们将其与[13]中的结果进行了比较,并观察到有很强的相关性。当然,仿真不能取代辐照活动,但它可以用来描述即将被辐照的应用的特征,或对许多应用进行比较,以预测哪一个是最敏感的。
综上所述,该方法允许在辐照实验前快速运行应用程序评估,以预测应用程序本身的敏感性或表征技术,或在部署用户应用程序之前。

值得注意的是,这种方法不需要芯片的网表,因此既可以被芯片供应商采用,以提前表述其设计,也可以被终端用户采用,后者可以快速运行其应用程序,并在辐照芯片之前获得近似的结果进行分析。


V.结论
本文描述了汽车领域的重要参与者所使用的一些方法和技术,以达到不可缺少的可靠性水平要求的最新标准。图示的典型案例与汽车芯片在其生命周期中所包含的几个测试阶段有关,包括制造结构和功能测试,以及确保在现场使用期间有可靠行为的方法。

作为一个经验教训,对最合适的测试程序进行准确的评估和规划,可以使高质量的汽车产品符合半导体生产商以及更高层次的期望。


参考文献:

[1]  H.-G. Stratigopoulos, F. Su, A. Coyette, C. He, E. Faehn, and D. Tille, “Panel:  “New automotive  design  methodologies  for  catching  latent defects and detecting anomalies online”,” in 1st Automotive Reliability and Test in Europe (ARTe 2021), 2021.

[2]  A. Ciarci, D. Tille, and P. Bernardi, “Towards an Automated Flow for Implementation of Dedicated LBIST Scan Chains for Functional Safety,” in 33rd  GI / GMM / ITG-Workshop  Test Methods  and Reliability  of Circuits and Systems, 2021.

[3]  S. Ravi, “Power-aware test: Challenges and solutions,” in 2007 IEEE International Test Conference, 2007, pp. 1– 10.

[4]  N. Mamikonyan, N. Melikyan, and R. Musayelyan, “IR Drop Estimation and Optimization on DRAM Memory using Machine Learning Algo- rithms,” in 2020  IEEE  East-West  Design  Test  Symposium  (EWDTS), 2020, pp. 1–4.

[5]  A. Manzini, P. Inglese, L. Caldi, R. Cantoro, G. Carnevale, M. Coppetta, M. Giltrelli, N. Mautone, F. Irrera, R. Ullmann, and P. Bernardi, “A Machine  Learning-based  Approach  to  Optimize  Repair  and  Increase Yield of Embedded Flash Memories in Automotive Systems-on-Chip,” in 2019 IEEE European Test Symposium (ETS), 2019, pp. 1–6.

[6]  ISO, “Road vehicles – Functional safety,” 2011.

[7]  P. Bernardi, M. Grosso, E. Sanchez, and O. Ballan, “Fault grading of software-based self-test procedures for dependable automotive applica- tions,” in 2011 Design, Automation Test in Europe, 2011, pp. 1–2.

[8]  A.  Garofalo,  M.  Rusci,  F.  Conti,  D.  Rossi,  and  L.  Benini,  “PULP- NN: accelerating quantized neural networks on parallel ultra-low-power RISC-V processors,” Philosophical Transactions of the Royal Society A, vol. 378, 2019.

[9]  P. Bernardi, R. Cantoro, S. De Luca, E. Snchez, and A. Sansonetti, “Development Flow for On-Line Core Self-Test of Automotive Micro- controllers,” IEEE Transactions on Computers, vol. 65, no. 3, pp. 744– 754, 2016.

[10]  F.  Wang  and  V.  D.  Agrawal,  “Single  Event  Upset:  An  Embedded Tutorial,”  in  21st  International  Conference  on  VLSI Design  (VLSID 2008), 2008, pp. 429–434.

[11]  L. Cassano, H. Guzman-Miranda, and M. A. Aguirre, “Early assessment of SEU sensitivity through untestable fault identification,” in 2014 IEEE 20th International On-Line Testing Symposium (IOLTS), 2014, pp. 186– 189.

[12]  E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson, “Fault injection into VHDL models: the MEFISTO tool,” in Proceedings of IEEE 24th International Symposium on Fault- Tolerant Computing, 1994, pp. 66– 75.

[13]  O. Ballan, P. Maillard, J. Arver, C. Smith, R. Petersson, A. Griessing, and F. Venini, “Evaluation of ISO 26262 and IEC 61508 metrics for transient faults of a multi-processor system-on-chip through radiation testing,” Microelectronics Reliability, vol. 107, p. 113601, 2020.

END

分享不易,恳请点个【👍】和【在看】

智能汽车开发者平台 分享汽车最新前言技术解读,行业分析,与授权行业资料分享平台。
评论 (0)
  • 文/郭楚妤编辑/cc孙聪颖‍伴随贸易全球化的持续深入,跨境电商迎来蓬勃发展期,物流行业 “出海” 成为不可阻挡的必然趋势。加之国内快递市场渐趋饱和,存量竞争愈发激烈。在此背景下,国内头部快递企业为突破发展瓶颈,寻求新的增长曲线,纷纷将战略目光投向海外市场。2024 年,堪称中国物流企业出海进程中的关键节点,众多企业纷纷扬帆起航,开启海外拓展之旅。然而,在一片向好的行业发展表象下,部分跨境物流企业的经营状况却不容乐观。它们受困于激烈的市场竞争、不断攀升的运营成本,以及复杂的国际物流环境,陷入了微利
    华尔街科技眼 2025-04-09 15:15 65浏览
  • ## DL/T645-2007* 帧格式:* 帧起始字符:68H* 地址域:A0 A1 A2 A3 A4 A5* 帧起始字符:68H* 控制码:1字节* 主站:* 13H:请求读电能表通信地址* 11H:请求读电能表数据* 1CH:请求跳闸、合闸* 从站:* 91H:正常应答读电能表* 9CH:正常应答跳闸、合闸* 数据域长度:1字节* 数据域:DI0 DI1 DI2 DI3* 发送方:每字节+33H* 接收方:每字节-33H* 数据标识:* 电能量* 最大需量及发生时间* 变量* 事件记录*
    四毛打印店 2025-04-09 10:53 40浏览
  •     根据 IEC术语,瞬态过电压是指持续时间几个毫秒及以下的过高电压,通常是以高阻尼(快速衰减)形式出现,波形可以是振荡的,也可以是非振荡的。    瞬态过电压的成因和机理,IEC 60664-1给出了以下四种:    1. 自然放电,最典型的例子是雷击,感应到电力线路上,并通过电网配电系统传输,抵达用户端;        2. 电网中非特定感性负载通断。例如热处理工厂、机加工工厂对
    电子知识打边炉 2025-04-07 22:59 142浏览
  •     在研究Corona现象时发现:临界电压与介电材料表面的清洁程度有关。表面越清洁的介电材料,临界电压越高;表面污染物越多的地方,越容易“爬电”。关于Corona现象,另见基础理论第007篇。    这里说的“污染物”,定义为——可能影响介电强度或表面电阻率的固体、液体或气体(电离气体)的任何情况。    IEC 60664-1 (对应GB/T 16935.1-2023) 定义了 Pollution Degree,中文术语是“污染等
    电子知识打边炉 2025-04-07 22:06 103浏览
  • 文/Leon编辑/侯煜‍就在小米SU7因高速交通事故、智驾性能受到质疑的时候,另一家中国领先的智驾解决方案供应商华为,低调地进行了一场重大人事变动。(详情见:雷军熬过黑夜,寄望小米SU7成为及时雨)4月4日上午,有网友发现余承东的职务发生了变化,华为官网、其个人微博认证信息为“常务董事,终端BG董事长”,不再包括“智能汽车解决方案BU董事长”。余承东的确不再兼任华为车BU董事长,但并非完全脱离华为的汽车业务,而是聚焦鸿蒙智行。据悉,华为方面寻求将车BU独立出去,但鸿蒙智行仍留在华为终端BG部门。
    华尔街科技眼 2025-04-09 15:28 61浏览
  • HDMI从2.1版本开始采用FRL传输模式,和2.0及之前的版本不同。两者在物理层信号上有所区别,这就需要在一些2.1版本的电路设计上增加匹配电路,使得2.1版本的电路能够向下兼容2.0及之前版本。2.1版本的信号特性下面截取自2.1版本规范定义,可以看到2.1版本支持直流耦合和交流耦合,其共模电压和AVCC相关,信号摆幅在400mV-1200mV2.0及之前版本的信号特性HDMI2.0及之前版本采用TMDS信号物理层,其结构和参数如下:兼容设计根据以上规范定义,可以看出TMDS信号的共模电压范
    durid 2025-04-08 19:01 154浏览
  •   卫星图像智能测绘系统全面解析   一、系统概述   卫星图像智能测绘系统是基于卫星遥感技术、图像处理算法与人工智能(AI)技术的综合应用平台,旨在实现高精度、高效率的地理空间数据获取、处理与分析。该系统通过融合多源卫星数据(如光学、雷达、高光谱等),结合AI驱动的智能算法,实现自动化、智能化的测绘流程,广泛应用于城市规划、自然资源调查、灾害监测等领域。   应用案例   目前,已有多个卫星图像智能测绘系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星图像智能测绘系统
    华盛恒辉l58ll334744 2025-04-08 15:04 81浏览
  • 在人工智能技术飞速发展的今天,语音交互正以颠覆性的方式重塑我们的生活体验。WTK6900系列语音识别芯片凭借其离线高性能、抗噪远场识别、毫秒级响应的核心优势,为智能家居领域注入全新活力。以智能风扇为起点,我们开启一场“解放双手”的科技革命,让每一缕凉风都随“声”而至。一、核心技术:精准识别,无惧环境挑战自适应降噪,听懂你的每一句话WTK6900系列芯片搭载前沿信号处理技术,通过自适应降噪算法,可智能过滤环境噪声干扰。无论是家中电视声、户外虫鸣声,还是厨房烹饪的嘈杂声,芯片均能精准提取有效指令,识
    广州唯创电子 2025-04-08 08:40 182浏览
  •   工业自动化领域电磁兼容与接地系统深度剖析   一、电磁兼容(EMC)基础认知   定义及关键意义   电磁兼容性(EMC),指的是设备或者系统在既定的电磁环境里,不但能按预期功能正常运转,而且不会对周边其他设备或系统造成难以承受的电磁干扰。在工业自动化不断发展的当下,大功率电机、变频器等设备被大量应用,现场总线、工业网络等技术也日益普及,致使工业自动化系统所处的电磁环境变得愈发复杂,电磁兼容(EMC)问题也越发严峻。   ​电磁兼容三大核心要素   屏蔽:屏蔽旨在切断电磁波的传播路
    北京华盛恒辉软件开发 2025-04-07 22:55 230浏览
  •   物质扩散与污染物监测系统软件:多领域环境守护的智能中枢   北京华盛恒辉物质扩散与污染物监测系统软件,作为一款融合了物质扩散模拟、污染物监测、数据分析以及可视化等多元功能的综合性工具,致力于为环境科学、公共安全、工业生产等诸多领域给予强有力的技术支撑。接下来,将从功能特性、应用场景、技术实现途径、未来发展趋势等多个维度对这类软件展开详尽介绍。   应用案例   目前,已有多个物质扩散与污染物监测系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润物质扩散与污染物监测系统。这
    华盛恒辉l58ll334744 2025-04-09 14:54 77浏览
  •   物质扩散与污染物监测系统:环境守护的关键拼图   一、物质扩散原理剖析   物质扩散,本质上是物质在浓度梯度、温度梯度或者压力梯度等驱动力的作用下,从高浓度区域向低浓度区域迁移的过程。在环境科学范畴,物质扩散作为污染物在大气、水体以及土壤中迁移的关键机制,对污染物的分布态势、浓度动态变化以及环境风险程度有着直接且重大的影响。   应用案例   目前,已有多个物质扩散与污染物监测系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润物质扩散与污染物监测系统。这些成功案例为物质
    华盛恒辉l58ll334744 2025-04-09 11:24 46浏览
  • 在万物互联时代,智能化安防需求持续升级,传统报警系统已难以满足实时性、可靠性与安全性并重的要求。WT2003H-16S低功耗语音芯片方案,以4G实时音频传输、超低功耗设计、端云加密交互为核心,重新定义智能报警设备的性能边界,为家庭、工业、公共安防等领域提供高效、稳定的安全守护。一、技术内核:五大核心突破,构建全场景安防基座1. 双模音频传输,灵活应对复杂场景实时音频流传输:内置高灵敏度MIC,支持环境音实时采集,通过4G模块直接上传至云端服务器,响应速度低至毫秒级,适用于火灾警报、紧急呼救等需即
    广州唯创电子 2025-04-08 08:59 143浏览
  •   卫星图像智能测绘系统:地理空间数据处理的创新引擎   卫星图像智能测绘系统作为融合卫星遥感、地理信息系统(GIS)、人工智能(AI)以及大数据分析等前沿技术的综合性平台,致力于达成高精度、高效率的地理空间数据采集、处理与应用目标。借助自动化、智能化的技术路径,该系统为国土资源管理、城市规划、灾害监测、环境保护等诸多领域输送关键数据支撑。   应用案例   目前,已有多个卫星图像智能测绘系统在实际应用中取得了显著成效。例如,北京华盛恒辉北京五木恒润卫星图像智能测绘系统。这些成功案例为卫星
    华盛恒辉l58ll334744 2025-04-08 16:19 75浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦