如何理解LinuxCPU上下文切换?

嵌入式ARM 2022-08-29 12:00



我们都知道 Linux 是一个多任务操作系统,它支持的任务同时运行的数量远远大于 CPU 的数量。当然,这些任务实际上并不是同时运行的(Single CPU),而是因为系统在短时间内将 CPU 轮流分配给任务,造成了多个任务同时运行的假象。

1、CPU上下文(CPU Context)

在每个任务运行之前,CPU 需要知道在哪里加载和启动任务。这意味着,系统需要提前帮助设置 CPU 寄存器程序计数器

CPU 寄存器是内置于 CPU 中的小型但速度极快的内存,程序计数器用于存储 CPU 正在执行的或下一条要执行指令的位置。

它们都是 CPU 在运行任何任务之前必须依赖的依赖环境,因此也被称为 “CPU 上下文”。如下图所示:

知道了 CPU 上下文是什么,我想你理解 CPU 上下文切换就很容易了。CPU上下文切换”指的是先保存上一个任务的 CPU 上下文(CPU寄存器和程序计数器),然后将新任务的上下文加载到这些寄存器和程序计数器中,最后跳转到程序计数器。

这些保存的上下文存储在系统内核中,并在重新安排任务执行时再次加载。这确保了任务的原始状态不受影响,并且任务似乎在持续运行。

2、CPU上下文切换的类型

你可能会说 CPU 上下文切换无非就是更新 CPU 寄存器和程序计数器值,而这些寄存器是为了快速运行任务而设计的。那么,为什么会影响 CPU 性能呢?

在回答这个问题之前,请问,你有没有想过这些“任务”是什么?你可能会说一个任务就是一个进程或者一个线程。是的,进程和线程正是最常见的任务,但除此之外,还有其他类型的任务。

别忘了硬件中断也是一个常见的任务,硬件触发信号,会引起中断处理程序的调用。

因此,CPU 上下文切换至少有三种不同的类型:

  • 进程上下文切换
  • 线程上下文切换
  • 中断上下文切换

接下来,让我们一起来看看。

3、进程上下文切换

Linux 按照特权级别将进程的运行空间划分为内核空间和用户空间,分别对应下图中 Ring 0 和 Ring 3 的 CPU 特权级别的 。

  • 内核空间Ring 0)拥有最高权限,可以直接访问所有资源。

  • 用户空间Ring 3)只能访问受限资源,不能直接访问内存等硬件设备。它必须通过系统调用陷入(trapped)内核中才能访问这些特权资源。

从另一个角度看,一个进程既可以在用户空间也可以在内核空间运行。当一个进程在用户空间运行时,称为该进程的用户态,当它落入内核空间时,称为该进程的内核态

用户态内核态的转换需要通过系统调用来完成。例如,当我们查看一个文件的内容时,我们需要以下系统调用:

  • open():打开文件

  • read():读取文件的内容

  • write():将文件的内容写入到输出文件(包括标准输出)

  • close():关闭文件

在上述系统调用过程中,是否会发生 CPU 上下文切换呢?当然是的!

这需要先保存 CPU 寄存器中原来的用户态指令的位置。接下来,为了执行内核态的代码,需要将 CPU 寄存器更新到内核态指令的新位置。最后是跳转到内核态运行内核任务。

那么系统调用结束后,CPU 寄存器需要恢复原来保存的用户状态,然后切换到用户空间继续运行进程。

因此,在一次系统调用的过程中,实际上有两次 CPU 上下文切换。

但需要指出的是,系统调用进程不会涉及进程切换,也不会涉及虚拟内存等系统资源切换。这与我们通常所说的“进程上下文切换”不同。进程上下文切换是指从一个进程切换到另一个进程,而系统调用期间始终运行同一个进程。

系统调用过程通常被称为特权模式切换,而不是上下文切换。但实际上,在系统调用过程中,CPU 的上下文切换也是不可避免的。

那么,进程上下文切换系统调用有什么区别呢?

首先,进程是由内核管理的,进程切换只能发生在内核态。因此,进程上下文不仅包括虚拟内存全局变量等用户空间资源,还包括内核栈寄存器等内核空间的状态。

所以,进程上下文切换系统调用要多出一步:

在保存当前进程的内核状态和 CPU 寄存器之前,需要保存进程的虚拟内存、栈等;并加载下一个进程的内核状态。

根据 Tsuna 的测试报告,每次上下文切换需要几十纳秒至微秒的 CPU 时间。这个时间是相当可观的,尤其是在大量进程上下文切换的情况下,很容易导致 CPU 花费大量时间来保存和恢复寄存器、内核栈、虚拟内存等资源。这正是我们在上一篇文章中谈到的,一个导致平均负载上升的重要因素。

那么,该进程何时会被调度/切换到在 CPU 上运行?

其实有很多场景,下面我为大家总结一下:

  • 当一个进程的 CPU 时间片用完时,它会被系统挂起,并切换到其他等待 CPU 运行的进程。

  • 当系统资源不足(如内存不足)时,直到资源充足之前,进程无法运行。此时进程也会被挂起,系统会调度其他进程运行。

  • 当一个进程通过 sleep 函数自动挂起自己时,自然会被重新调度。

  • 当优先级较高的进程运行时,为了保证高优先级进程的运行,当前进程会被高优先级进程挂起运行

  • 当发生硬件中断时,CPU 上的进程会被中断挂起,转而执行内核中的中断服务程序。

了解这些场景是非常有必要的,因为一旦上下文切换出现性能问题,它们就是幕后杀手。

4、线程上下文切换

线程和进程最大的区别在于,线程是任务调度的基本单位,而进程是资源获取的基本单位。

说白了,内核中所谓的任务调度,实际的调度对象是线程;而进程只为线程提供虚拟内存和全局变量等资源。所以,对于线程和进程,我们可以这样理解:

  • 当一个进程只有一个线程时,可以认为一个进程等于一个线程

  • 当一个进程有多个线程时,这些线程共享相同的资源,例如虚拟内存和全局变量。

  • 此外,线程也有自己的私有数据,比如栈和寄存器,在上下文切换时也需要保存。

这样,线程的上下文切换其实可以分为两种情况:

  • 首先,前后两个线程属于不同的进程。此时,由于资源不共享,切换过程与进程上下文切换相同。

  • 其次,前后两个线程属于同一个进程。此时,由于虚拟内存是共享的,所以切换时虚拟内存的资源保持不变,只需要切换线程的私有数据、寄存器等未共享的数据。

显然,同一个进程内的线程切换比切换多个进程消耗的资源要少。这也是多线程替代多进程的优势。

5、中断上下文切换

除了前面两种上下文切换之外,还有另外一种场景也输出 CPU 上下文切换的,那就是中断

为了快速响应事件,硬件中断会中断正常的调度和执行过程,进而调用中断处理程序

在中断其他进程时,需要保存进程的当前状态,以便中断后进程仍能从原始状态恢复。

与进程上下文不同,中断上下文切换不涉及进程的用户态。因此,即使中断进程中断了处于用户态的进程,也不需要保存和恢复进程的虚拟内存、全局变量等用户态资源。

另外,和进程上下文切换一样,中断上下文切换也会消耗 CPU。过多的切换次数会消耗大量的 CPU 资源,甚至严重降低系统的整体性能。因此,当发现中断过多时,需要注意排查它是否会对您的系统造成严重的性能问题。

6、小结


  • CPU上下文切换,是保证Linux系统正常工作的核心功能之一,一般情况下不需要我们特别关注。

  • 但过多的上下文切换,会把CPU时间消耗在寄存器,内核栈以及虚拟内存等数据的保存和恢复上,从而缩短进程真正运行的时间,导致系统的整体性能大幅下降。

  • 自愿上下文切换变多了,说明进程都在等待资源,有可能发生了 I/O 等其他问题。

  • 非自愿上下文切换变多了,说明进程都在被强制调度,也就是都在争抢 CPU,说明 CPU 的确成了瓶颈。

  • 中断次数变多了,说明 CPU 被中断处理程序占用,还需要通过查看 /proc/interrupts 文件来分析具体的中断类型。

参考资料:
https://medium.com/geekculture/linux-cpu-context-switch-deep-dive-764bfdae4f01
END


本文转载自“码农的荒岛求生”公众号,版权归原作者所有,如有侵权,请联系删除。

推荐阅读
盘点:嵌入式软件开发常用软件
手把手教你VSCode搭建STM32开发环境
神解释:UART、I2C、SPI、1-wire四大通信接口

→点关注,不迷路←
嵌入式ARM 关注这个时代最火的嵌入式ARM,你想知道的都在这里。
评论
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 94浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 39浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 33浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 82浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 37浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 100浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 150浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 51浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 115浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 128浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 80浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 38浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 126浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 51浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦