TCP原理(三次握手四次挥手)

嵌入式悦翔园 2022-08-29 11:40

关注星标公众号,第一时间获取信息

一、TCP协议

TCP,即Transmission Control Protocol,传输控制协议。人如其名,要对数据的传输进行一个详细的 控制。

TCP协议段格式

图片

源/目的端口号:表示数据是从哪个进程来,到哪个进程去;

序列号:在建立连接时由计算机生成的随机数作为其初始值,通过 SYN 包传给接收端主机,每发送一 次数据,就「累加」一次该「数据字节数」的大小。用来解决网络包乱序问题。

确认应答号:指下一次「期望」收到的数据的序列号,发送端收到这个确认应答以后可以认为在这个序号以前的数据都已经被正常接收。用来解决不丢包的问题。

6位标志位:

  • URG:紧急指针是否有效

  • ACK:确认号是否有效,该位为 1 时,「确认应答」的字段变为有效,TCP 规定除了最初建立连接时的 SYN 包之外该位必须设置为 1 。

  • PSH:提示接收端应用程序立刻从TCP缓冲区把数据读走

  • RST:对方要求重新建立连接;我们把携带RST标识的称为复位报文段,该位为 1 时,表示 TCP 连接中出现异常必须强制断开连接。

  • SYN:请求建立连接;我们把携带SYN标识的称为同步报文段,该位为 1 时,表示希望建立连接,并在其「序列号」的字段进行序列号初始值的设定。

  • FIN:通知对方,本端要关闭了,我们称携带FIN标识的为结束报文段,该位为 1 时,表示今后不会再有数据发送,希望断开连接。当通信结束希望断开连接时, 通信双方的主机之间就可以相互交换 FIN 位为 1 的 TCP 段。

二、TCP原理

TCP对数据传输提供的管控机制,主要体现在两个方面:安全和效率。这些机制和多线程的设计原则类似:保证数据传输安全的前提下,尽可能的提高传输效率。

1,确认应答机制

2,超时重传机制

因此主机B会收到很多重复数据。那么TCP协议需要能够识别出那些包是重复的包,并且把重复的丢弃掉。这时候我们可以利用前面提到的序列号,就可以很容易做到去重的效果。

这时候我们可以利用前面提到的序列号,就可以很容易做到去重的效果。

最理想的情况下,找到一个最小的时间,保证 "确认应答一定能在这个时间内返回"。

但是这个时间的长短,随着网络环境的不同,是有差异的。

如果超时时间设的太长,会影响整体的重传效率;

如果超时时间设的太短,有可能会频繁发送重复的包;

TCP为了保证无论在任何环境下都能比较高性能的通信,因此会动态计算这个最大超时时间。

Linux中(BSD Unix和Windows也是如此),超时以500ms为一个单位进行控制,每次判定 超时重发的超时时间都是500ms的整数倍。

如果重发一次之后,仍然得不到应答,等待 2*500ms 后再进行重传。

如果仍然得不到应答,等待 4*500ms 进行重传。依次类推,以指数形式递增。

累计到一定的重传次数,TCP认为网络或者对端主机出现异常,强制关闭连接。

3,连接管理机制

图片

SYN同步报文段,尝试和对方建立连接,JavaSocket API中,客户端new Socket内核就会发起这样的SYN请求

SYN这个标志位为1,表示是一个同步报文段

我能听见(ACK),你能听见我吗(SYN)

建立连接的过程,相当于通信双方各自给对方发送SYN,再各自给对方发送ACK中间的ACK和SYN和二为一,于是最后就是三次握手

能否只有两次握手?

服务端状态转化:

[CLOSED -  LISTEN] 服务器端调用listen后进入LISTEN状态,等待客户端连接;

[LISTEN -  SYN_RCVD] 一旦监听到连接请求(同步报文段),就将该连接放入内核等待队 列中,并向客户端发送SYN确认报文。

[SYN_RCVD -  ESTABLISHED] 服务端一旦收到客户端的确认报文,就进入ESTABLISHED状 态,可以进行读写数据了。

[ESTABLISHED -  CLOSE_WAIT] 当客户端主动关闭连接(调用close),服务器会收到结束 报文段,服务器返回确认报文段并进入CLOSE_WAIT;

[CLOSE_WAIT -  LAST_ACK] 进入CLOSE_WAIT后说明服务器准备关闭连接(需要处理完之 前的数据);当服务器真正调用close关闭连接时,会向客户端发送FIN,此时服务器进入 LAST_ACK状态,等待最后一个ACK到来(这个ACK是客户端确认收到了FIN)

[LAST_ACK -  CLOSED] 服务器收到了对FIN的ACK,彻底关闭连接。

客户端状态转化

[CLOSED -  SYN_SENT] 客户端调用connect,发送同步报文段;

[SYN_SENT -  ESTABLISHED] connect调用成功,则进入ESTABLISHED状态,开始读写数据;

[ESTABLISHED -  FIN_WAIT_1] 客户端主动调用close时,向服务器发送结束报文段,同时 进入FIN_WAIT_1;

[FIN_WAIT_1 -  FIN_WAIT_2] 客户端收到服务器对结束报文段的确认,则进入 FIN_WAIT_2,开始等待服务器的结束报文段;

客户端收到服务器发来的结束报文段,进入TIME_WAIT,并发 出LAST_ACK;

客户端要等待一个2MSL(Max Segment Life,报文最大生存时 间)的时间,才会进入CLOSED状态。

重要的转状态

1:LISTEN:服务器启动完毕,随时可以有客户端来连接

2:ESTABLISHED:建立连接成功,随时传输消息

服务器调用new ServerSocket就会绑定端口号,并且进入LISTEN状态

客户端调用new Socket,就会尝试和服务器建立连接并触发三次握手

三次握手不能只握两次,如果没有最后一个ACK,此时主机B是无法知道自己发送能力和对方接受能力是否正常

三次握手,握手四次可以但没必要,中间的SYN和ACK是同一时刻触发的

3:CLOSE_WAIT:四次挥手挥手一半剩下的两次就不挥手了(接收方没调用close方法,就会导致四次挥手只挥手两次,从而没有正确关闭连接)。

4:TIME_WAIT:谁主动断开连接,谁进入TIME_WAIT状态,此时主机已经完成四次挥手过程,但是仍然不能立即释放,要等TIME_WAIT状态保持一定时间之后释放

三次握手和四次挥手过程出现丢包就会触发超时重传

4,滑动窗口

没有滑动窗口的机制下,传输N份数据,就需要等待N次应答时间,总的传输时间:N份数据传输时间+N份应答时间。

滑动窗口的实质就是批量传输数据,总的传输时间:N份数据传输时间重叠成1份时间。

窗口:不等待ACK的情况下,批量发送的最大数据量,就叫窗口大小

滑动:形象的比喻,窗口的范围就是表示当前哪些数据在等待ACK,随着一个ACK到达,就立刻发送下一个数据,等待的数据包范围就在逐渐滑动

窗口的大小不变,当发送方收到2001的ACK,就意味着1001-2000的数据对方已经收到,此时立刻传输5001-6001的数据,此时等待的ACK数据包序号就是2001、3001、4001、5001.

ACK丢了

1001这个ACK丢了,2001这个ACK没丢,就认为1-1000这个数据也是顺利到达的,1001丢了就丢了,无所谓,2001能够包含1001ACK中的信息。

数据包就直接丢了

如果数据报丢了,例如1001-2000丢了,然后2001-3000,3001-4000等后面的这几个数据都顺利到达,此时主机B反馈的ACK的确认的序号始终是1001,如果主机A发现连续几个ACK都是1001,主机A就知道1001这个数据报丢失,就会重传1001

当主机B收到1001这个数据的时候,由于刚才到达2001-7000这些数据前面都已经收到了,接下俩ACK就从7001开始,重传只是重传丢失的数据,其他数据不需要额外重传

5,流量控制

接收端处理数据的速度是有限的。如果发送端发的太快,导致接收端的缓冲区被打满,这个时候如果发送端继续发送,就会造成丢包,继而引起丢包重传等等一系列连锁反应。因此TCP支持根据接收端的处理能力,来决定发送端的发送速度。这个机制就叫做流量控制(Flow Control);

接收端将自己可以接收的缓冲区大小放入 TCP 首部中的 "窗口大小" 字段,通过ACK端通知 发送端;

窗口大小字段越大,说明网络的吞吐量越高;

接收端一旦发现自己的缓冲区快满了,就会将窗口大小设置成一个更小的值通知给发送端;

发送端接受到这个窗口之后,就会减慢自己的发送速度;

如果接收端缓冲区满了,就会将窗口置为0;这时发送方不再发送数据,但是需要定期发送 一个窗口探测数据段,使接收端把窗口大小告诉发送端。

流量控制本质上,是根据接受方的处理能力来制约发送方的发送效率

根据接受缓冲区的剩余空间大小,来制约发送方的滑动窗口

通过TCP报头中的窗口大小字段来反映给发送方

6,拥塞控制

虽然TCP有了滑动窗口这个大杀器,能够高效可靠的发送大量的数据。但是如果在刚开始阶段就发送大 量的数据,仍然可能引发问题。因为网络上有很多的计算机,可能当前的网络状态就已经比较拥堵。在不清楚当前网络状态下,贸然发送大量的数据,是很有可能引起雪上加霜的。TCP引入 慢启动机制,先发少量的数据,探探路,摸清当前的网络拥堵状态,再决定按照多大的速度传 输数据;

拥塞控制由于不好衡量传输路径的拥堵情况,只能通过反复试探的方式,逐渐试探出应该要用多大的窗口

  • 1:通过一个较小的窗口大小开始试探

  • 2:如果没有发生拥堵(没有丢包)就指数方式扩大拥塞窗口

  • 3:达到一定阈值后,线性增加窗口大小

  • 4:一直到出现丢包,窗口回到初始值,调整阈值为出现丢包的窗口大小的一半

7,延迟应答

如果接收数据的主机立刻返回ACK应答,这时候返回的窗口可能比较小。

假设接收端缓冲区为1M。一次收到了500K的数据;如果立刻应答,返回的窗口就是500K;

但实际上可能处理端处理的速度很快,10ms之内就把500K数据从缓冲区消费掉了;

在这种情况下,接收端处理还远没有达到自己的极限,即使窗口再放大一些,也能处理过来;

如果接收端稍微等一会再应答,比如等待200ms再应答,那么这个时候返回的窗口大小就是 1M;

窗口越大,网络吞吐量就越大,传输效率就越高。我们的目标是在保证网络不拥塞的情况 下尽量提高传输效率;

8,捎带应答

在延时应答的基础上,进一步提高程序运行效率而引入的机制

客户端和服务器之间的通信模式一般都是Requet-Response模式,一问一答

主机B要给主机A返回两个数据,严格的说,这两个数据的传输时机是不一样的

Req发送内核收到数据,就会立刻返回ACK,Resp返回应用程序代码,执行完Resp把响应写回客户端,才发送的响应

由于存在延时应答,ACK的传输时机有延时,延时的时间足够让英语程序完成响应计算,应用程序

返回Resp的时候发现刚才的ACK还没发,就在Resp的基础上,顺便捎带一个ACK的值

9,粘包问题

图片

首先要明确,粘包问题中的 "包" ,是指的应用层的数据包。在TCP的协议头中,没有如同UDP一样的 "报文长度" 这样的字段,但是有一个序号这样的字 段。站在传输层的角度,TCP是一个一个报文过来的。按照序号排好序放在缓冲区中。站在应用层的角度,看到的只是一串连续的字节数据。那么应用程序看到了这么一连串的字节数据,就不知道从哪个部分开始到哪个部分,是一个 完整的应用层数据包。

那么如何避免粘包问题呢?归根结底就是一句话,明确两个包之间的边界。

对于定长的包,保证每次都按固定大小读取即可;例如上面的Request结构,是固定大小 的,那么就从缓冲区从头开始按sizeof(Request)依次读取即可;对于变长的包,可以在包头的位置,约定一个包总长度的字段,从而就知道了包的结束位 置;对于变长的包,还可以在包和包之间使用明确的分隔符(应用层协议,是程序猿自己来定 的,只要保证分隔符不和正文冲突即可)

推荐阅读



01

加入嵌入式交流群


02

嵌入式资源获取


03

STM32中断优先级详解


04

STM32下载程序新思路--使用串口下载程序


嵌入式悦翔园 专注于嵌入式技术,包括但不限于STM32、Arduino、51单片机、物联网、Linux等编程学习笔记,同时包含大量的学习资源。欢迎关注,一同交流学习,共同进步!
评论
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 83浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 101浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 160浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 137浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 115浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 209浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 108浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 47浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 51浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 44浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 195浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦