美海军发布最强电子战飞机EA-18G咆哮者2022年度视频!

射频百花潭 2022-08-28 13:07

8月21日,美国海军发布EA-18G"咆哮者“2022年度视频”Growler Ball 2022"。每年拍摄并发布”咆哮者“年度视频是美国海军的一项传统。


EA-18G电子战机(编号:EA-18G,代号:Growler,译文:咆哮者,通称:波音EA-18G“咆哮者”)由美国波音公司(Boeing)研制,系是美国一型电子干扰机。

EA-18G电子战机在美国海军F/A-18E/F“超级大黄蜂”战斗机的基础之上发展研制而成,不仅拥有新一代电子对抗设备,同时还保留了F/A-18E/F全部武器系统和优异的机动性能,先进的设计使得其无论在航空母舰的飞行甲板上还是在陆地上都能较好地执行机载电子攻击(AEA)任务。专家们评价说,“咆哮者”既是当今战斗力最强的电子干扰机,又是电子干扰能力最强的战斗机 。


AN/APG-79

有源相控阵雷达


采用砷化镓单片微波集成电路(MMIC)作为收发模块(T/R模块),是一种可执行空空和空地作战任务的全数字化多功能火控雷达。


可以为机上人员提供态势感知、近实时跟踪和多目标跟踪能力,并且具有很高分辨力的远距合成孔径雷达(SAR)地面成像能力,可进行实时目标定位,并可以将运动目标叠加到SAR图像上(SAR-GMTI)。

APG-79雷达还可提供一定的电子保护和电子攻击的能力。

电子对抗系统

AN/ALQ-99


高-低波段AN/ALQ-99 电子对抗吊舱采用了宽频谱、多信道的数字化接收机和信号分集处理等技术,可以同时实现多路信号的精确定位和监视,根据信号分析对方雷达的类型和威胁程度,并采取多种最优手段对目标进行覆盖压制或欺骗干扰。

干扰的频段和频率覆盖为:  

  • 波段1(VHF)

  • 波段2(VHF/UHF)

  • 波段3(0.3~0.5GHz)

  • 波段4(0.5~1.0GHz)

  • 波段5(1.0GHz)

  • 波段6(2.7GHz)

  • 波段7(2.6~3.5GHz)

  • 波段8(4.3~7.0GHz)

  • 波段9(7.0~10.0GHz)

  • 波段10(12~18GHz)




由于EA-18G通过采取一系列的RCS缩减措施后,对干扰功率的要求没有那么高了,所以ALQ-99的最大功率输出功率也从旧版的10.8kW降到了6.8kW。干扰机的功率并不是越大越好,要考虑成本、期望的作用的距离和干扰效果等。

自从20世纪70年代初以来,ALQ-99一直在役,在越战期间发挥了作用,已服役接近50年,也进行过改进和升级,但是即将被下一代干扰机(NGJ)所替代。

NGJ的新技术组合将在更宽的频率范围内产生更强大的干扰信号,干扰波束也将具有针对性和可操纵性,从而减少对友军系统的干扰。


宽带接收机

AN/ALQ-218


除AN/ALQ-99外,EA-18G翼尖还固定安装了AN/ALQ-218宽带接收机,二者搭配使用,实现了相当宽频带范围内的信号探测接收和对抗压制能力。它是无源高性能的SIGINT传感器系统,通过检测,识别,定位和分析射频(RF)发射源。


USQ-113(V) 

通信对抗系统


拥有指挥、控制和通信对抗、电子支援措施(ESM)及通信等多种任务模式,在 VHF/UHF频段工作,基本频段20-500MHz,重点频段225-400MHz。USQ-113(V) 可与商用现货接收机/发射及技术和先进的软件结合,能够自动干扰有源目标或盲干扰指定目标,无论大型预警雷达还是路边炸弹的遥控装置都无法幸免。

通信监听和干扰是通信电子战的重要方面,USQ-113(V)的通信模式还允许进行一般的通话或实施模拟通信欺骗(ICD),通过窃听或破坏敌方的指挥控制链路,并且还具有多目标干扰能力,噪声和标准欺骗干扰能有效破坏敌方作战。

干扰对消系统

(INCANS)


全频段的电子干扰虽然达到了干扰目的,但也对己方的通信系统产生影响。而INCANS的能力就是在对外实施干扰的同时,采用主动干扰对消技术保证己方甚高频(UHF)话音通信的畅通,也就是要在干扰别人不能通信的时候自己还可以保持通信。


关于

EA-18G电子战机


发展沿革

EA-18G电子战飞机又叫EA-18G“咆哮者”电子攻击机。是在美国海军F/A-18E/F“超级大黄蜂”战斗攻击机的基础之上发展研制而成。2006年8月4日,波音公司第一架量产型EA-18G在密苏里州圣路易斯市举行了隆重而简短的下线仪式。

第一架EA-18G交接仪式

2007年9月25日,一架刚刚于数天前完成生产线组装的EA-18G“咆哮者”电子攻击机,降落在马里兰州帕塔克森特河海军航空站。它是美国海军接受的首架产品型EA-18G电子攻击机。EA-18G未来将代替在美国海军服役的EA-6B“徘徊者”电子攻击机。尽管海军强调了这一型号的重要性,美国国会在该型研制成功时并没有表示很大的支持,在2007财年预算中要求美国海军多购买12架F/A-18E“超级大黄蜂”战斗机,而不是继续小批量生产EA-18G“咆哮者”电子攻击机。此举引起了美国海军的不满。终于到了2009年底,该型才正式进入了全面批生产阶段。 

EA-18G“咆哮者”拥有十分强大的电磁攻击能力。凭借诺斯罗普·格鲁门公司为其设计的ALQ-218V(2)战术接收机和新型ALQ-99战术电子干扰吊舱,EA-18G可以高效地执行对地空导弹雷达系统的压制任务。与以往拦阻式干扰不同,EA-18G可以通过分析干扰对象的跳频图谱自动追踪其发射频率,并采用“长基线干涉测量法”对辐射源进行更精确的定位以实现“跟踪-瞄准式干扰”。此举大大集中了干扰能量,首度实现了电磁频谱领域的“精确打击”。采用上述技术的EA-18G可以有效干扰160公里外的雷达和其它电子设施,超过了任何现役防空火力的打击范围。不仅如此,安装于EA-18G机首和翼尖吊舱内的ALQ-218V(2)战术接收机还是现世界上唯一能够在对敌实施全频段干扰时仍不妨碍电子监听功能的系统。

研制背景

EA-6B“徘徊者”电子战飞机

现代战争中,电子支援已成为与火力打击并重的一种“特殊突击样式”。从1971年起,EA-6B“徘徊者”就被美海军用于压制敌人的电子活动和获取战区内的战术电子情报来支援攻击机和地面部队。其主要机载设备包括AN/ALQ-99F电子干扰系统(在5个干扰吊舱内的10个干扰发射机,每个干扰舱可以覆盖7个频段中的一个)、灵敏侦察接收机(可探测远距离的雷达信号)、AN/AYK-14中央计算机、全天候自动着舰系统(ALCS)、多功能显示器,以及通信、导航与识别系统等。

F-4G

在海湾战争中,EA-6B与EF-111A和F-4G三种电子战飞机一起组成联合编队,近距离压制地面防空火力的制导、瞄准系统和通信指挥控制系统,极为出色地完成了任务,一役成名。十几年过去,昔日驰骋疆场三剑客中的两个——EF-111A与F-4G均已解甲归田,使得EA-6B不得不承担美海军所有随队电子支援的重任。

波音F/A-18F“超级大黄蜂”战斗机

可是,由于EA-6B服役较早,最年轻的一架飞机也已在海风中磨砺了15年,虽然经过多次现代化改造,但机体结构的老化绝对不容忽视。再者,EA-6B所装两台J52-P-408涡喷发动机,就算把节流阀推到头也只能达到1048千米/小时的极速,使其在执行具有时间敏感性的任务时无法跟上突击集群。况且由攻击机A-6发展而来的EA-6B机动性能不佳,几无空战能力,执行任务必须依靠其它战斗机护航。所以,面对未来战场严峻的形势,已有30年役龄的“徘徊者”恐将独木难支,这催生了美国海军对下一代电子攻击机的迫切需求。

EA-18G

麦道提议使用F/A-18F双座型的电子战改型来取代“徘徊者”。由于航电和计算机的进步,两名乘员就可以担负原先 4 人的任务,“徘徊者”的 5 个 ALQ-99 吊舱也可以被一个多波段干扰吊舱取代。洛马公司也“不失时机”地推出了 EA-JSF 方案,主打采用全新电子设备尤其是具有短距/垂直起降能力的EA-35。这引起了美国海军陆战队的浓厚兴趣,表示无意采购不具备 V/STOL 能力的EA-18G,而将 EA-35 列为陆战队下一代电子攻击机的首选。但是新型吊舱相当昂贵,于是美国海军询问波音能否整合进 EA-6B ICAP-III 的技术,包括 ALQ-99 吊舱、关键的 ALQ-218 接收机组件,以及 MIDS/Link 16 数据链。最初的型号安装 APG-73 雷达,以后升级为 APG-79 AESA。翼尖响尾蛇导弹滑轨被多波段接收机取代,接收机吊舱上还有 4 片地波段电子信号接收天线。2001 年圣路易斯市的 F/A-18E/F 生产线中,一架尚未完成总装的EMD F/A-18F“超级大黄蜂”被拖入一个独立设置的机库另行装配。同年 11 月 15 日,此架被称为 F/A-18F1 的战斗机携带两个副油箱、3 具 ALQ-99 电子干扰吊舱和 2 枚AIM-120 中距空空导弹完成了首飞,这就是 EA-18G 的原型机。原型机飞行性能测试在 9,000 米高空成功进行,飞行速度为马赫 0.9,过载3g。截至 2002 年 8 月 24 日,这架原型机共完成了五次试飞,之后转入地面综合实验室测试。2002 年 12 月美国海军正式启动 EA-18G 项目,波音是主承包商,诺斯罗普·格鲁门公司负责集成电子战套件。

服役历程

主要为美国海军,现已部署到下列部队:

  • 美国海军惠德贝岛海军航空站第129电子攻击中队(VAQ-129)

  • 美国海军第三舰载机联队第130电子攻击中队(VAQ-130)

  • 美国海军惠德贝岛海军航空站第132电子攻击中队(VAQ-132)

  • 美国海军第十一舰载机联队第135电子攻击中队(VAQ-135)

  • 美国海军惠德贝岛海军航空站第136电子攻击中队(VAQ-136)

  • 美国海军第一舰载机联队第137电子攻击中队(VAQ-137)

  • 美国海军惠德贝岛海军航空站第138电子攻击中队(VAQ-138)

  • 美国海军第十四舰载机联队第139电子攻击中队(VAQ-139)

  • 美国海军第五舰载机联队第141电子攻击中队(VAQ-141)

  • 美国海军中国湖海军航空站第9航空测试与评估中队(VX-9)

  • 美国海军法伦海军航空站空中作战中心(NSAWC)

  • 美国空军芒廷霍姆空军基地第390战斗机中队(390 FS)


技术特点

EA-18G 与F/A-18F Block II 批次保持了90%的共通性,最大的改动在软件上,这无疑能大大降低后勤保障的压力,也节省了飞行员完成新机改装训练所需的时间与费用。实际上自 Lot 30 批次后的 F 型在结构上进行了重新配置以容纳 G 型的设备,在必要的情况下,这些 F 型可改装成 G 型。作为 F/A-18E/F 的衍生型号,EA-18G“咆哮者”具有和前者相同的机动性能,EA-18G 具备 F/A-18E/F 的作战能力,因此完全可以胜任随队电子支援任务。EA-18G 可挂载和投放多种武器,其中包括 HARM 导弹和 AIM-120,虽然EA-18G 没有内置机炮,但其具备相当的空战能力,不仅足以自卫,甚至可以执行护航任务。

着舰中的EA-18G

电磁攻击

作为一款名副其实的电子战飞机,EA-18G 拥有十分强大的电磁攻击能力。凭借诺斯罗普·格鲁门公司为其设计的 ALQ-218V(2)战术接收机和新的 ALQ-99 战术电子干扰吊舱,它可以高效地执行对面空导弹雷达系统的压制任务。以往的电子干扰往往采用覆盖某频段的梳状波,但敌方雷达仅仅工作在若干特定频率。这样的干扰方式将能量分散在较宽的频带上,就如同对电磁频谱的“地毯式轰炸”,付出功率代价太大。具有跳频(FH)能力的抗干扰系统出现之后,传统干扰方式无法有效应对每秒钟发射频率都要跳动数次的电台和雷达,干扰效果遂大打折扣。与以往这些拦阻式干扰不同,EA-18G 可以通过分析干扰对象的跳频图谱,自动追踪其发射频率。采用上述技术的 EA-18G 可以有效干扰 160 千米外的雷达和其它电子设施,超过了任何现役防空火力的打击范围。

EA-18G

电子监听

安装于咆哮者头部和翼尖吊舱内的 ALQ-218V(2) 战术接收机是世界上唯一能够在对敌实施全频段干扰时仍不妨碍电子监听功能的系统,这项功能被厂商称为—“透视”。全频段电子干扰,就如同你为扰乱两个人的谈话,特地搬来一个大功率的功放喇叭。这样虽然能达到干扰目的,但由于喇叭的存在你也无法听到任何一方的言语。但诺斯罗普·格鲁门公司的 ALQ-218 接收机子系统却既可以让交谈双方无法交流,同时又令你可以听清他们说话。而且,EA-18G 还具有相应的 INCANS 通信能力,即在对外实施干扰的同时,采用主动干扰对消技术保证己方甚高频(UHF)话音通信的畅通。这项技术在美军中也是首次应用。

EA-18G上任务载荷示意图

通信对抗

USQ-113(V) 通信对抗系统也是 EA-18G 的制式装备。它拥有指挥、控制和通信对抗(C3CM)、电子支援措施(ESM)及通信等多种任务模式,在 VHF/UHF 频段工作,基本频段 20~500MHz,重点频段 225~400MHz。USQ-113(V) 可与商用现货接收机/发射及技术和先进的软件结合,为军方提供了一个易于操作的系统。此型机载通信对抗系统能够自动干扰有源目标或盲干扰指定目标,无论大型预警雷达还是路边炸弹的遥控装置都无法幸免。通信监听和干扰是电子战的重要方面,USQ-113(V)的通信模式还允许进行一般的通话或实施模拟通信欺骗(ICD),通过窃听或破坏敌方的指挥控制链路,指挥官可以取得战场上显著的战斗优势。系统能设置在不同信号内共享功率,具有多目标干扰能力,噪声和标准欺骗干扰能有效破坏敌方作战。通过将系统与外部的调制解调器连接,可优化系统来对抗特殊网络。

注意进气口上方处于打开位置的减速板

EA-18G 的 AN/APG-79 型机载雷达由雷锡恩公司设计制造,这种具备电子对抗能力的雷达采用了与第四代战斗机 F-22A、F-35 相同的“有源电扫阵列”(AESA)技术。这使得“咆哮者”可以轻易地在使用雷达的其它功能时分出一部分 C/R 单元对敌进行离散的干扰压制,这在以往是不可想像的。

作为“FORCE net”(部队网)的关键节点,EA-18G 装备了基于 16 号数据链的 JTIDS 联合战术信息分发系统。JTIDS 采用了高速跳频、跳时、直接序列扩频和纠错编码等多种反侦察和抗干扰措施,是当今世界最为“坚固”的无线战术通信系统。除了核电磁脉冲武器,美军自己也没有干扰 JTIDS 的有效手段。因而,“咆哮者”的抗干扰能力不可小视。

任务执行

EA-18G能够在单个任务中保护多架飞机或多个地面部队集群。它在执行任务时主要包括三个步骤:

  1. 定位和分析潜在的雷达和通信威胁。“咆哮者”将任务分配中获得的数据和来自机上传感器、通信设备的信息结合起来定位和识别雷达和通信威胁目标。任务分配是作战出发前的准备工作:机组人员被告知已知威胁的简要信息(如雷达和地空导弹的位置和型号),并与攻击编队的成员一起计划瞄准或是避开这些威胁。“咆哮者”上装备有卫星通信设备,用于情报收集。
  2. 机组人员确定是否需要同这些威胁作战以及如何作战。“咆哮者”的机组人员可以在彩色显示器上看到收集到的信息。潜在威胁的位置和其他关键数据可以叠加在地形图上显示出来,或者与其他必需的数据一起以表格形式显示出来。软件算法将信息关联起来并进行筛选,协助机组人员分析数据并做出决定。
  3. 抑制威胁,为空中或地面部队执行任务扫清道路。“咆哮者”主要利用电子攻击干扰吊舱扰乱敌方雷达。这些吊舱发射特定频率的电磁干扰致盲敌方雷达,使他们无法发现接近的攻击部队。

EA-18G正在起飞

性能数据

参考数据

乘员

2人

长度

18.31米

翼展

13.62米(包括翼尖吊舱)

高度

4.88米

机翼面积

46.5平方米

空重

15,011千克

最大起飞重量

29,964千克

动力系统

2× 通用电气F414 -GE-400 涡扇发动机

推力

最大推力:62.3千牛×2

加力推力:97.9千牛×2

内部载油量

6,323千克

外部载油量

4,420千克外挂燃料 

最大飞行速度

1.8马赫(1900公里/小时)

实用升限

15,000米

航程

2,346千米

作战半径

722千米

爬升率

-

翼载荷

453千克/平方米

推重比

0.93

武器系统

外挂点:6×翼下,3×机身(8,050千克外挂重量)

翼尖2×响尾蛇导弹

翼下2×AIM-120AMRAAM

其余为电子对抗挂点


总体评价

EA-18G的基础型号F/A-18E/F“超级大黄蜂”,虽然按照第四代战斗机的标准来看,机动性、隐身能力、雷达设备、武器配置都不很突出,但作为一种多用途战斗机却能在各项性能上保证一定水准,从而在综合性能达到优秀的标准。另一方面,“超级大黄蜂”机体拥有充分的可扩展潜力,令其拥有更强的作战灵活性,可满足不同用途的作战需要。EA-18G的成功,就是这种性能拓展优势的充分体现。

EA-18G已成为美国海军新的“杀手锏”,并一度被认为可能会被空军引用。但美国海空军相互间的隔阂却令这一想法难以实现,虽然海空共用一款性价比较高的电子战飞机对五角大楼来说是最好的选择。

声明:


本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有。

投稿/招聘/推广/宣传 请加微信:15989459034

射频百花潭 国内最大的射频微波公众号,专注于射频微波/高频技术分享和信息传递!
评论
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 98浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 102浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 37浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 86浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 66浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 70浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 41浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 65浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 83浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 51浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 106浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦