一文聊聊自动驾驶感知系统

智驾最前沿 2022-08-21 08:30

--关注回复“SOA--

↓领取:面向智能车辆开发的开放性SOA方案

感知是什么?

在自动驾驶赛道中,感知的目的是为了模仿人眼采集相关信息,为后续做决策提供必要的信息。根据所做决策的任务不同,感知可以包括很多子任务:如车道线检测、3D目标检测、障碍物检测、红绿灯检测等等;再根据感知预测出的结果,完成决策;最后根据决策结果执行相应的操作(如变道、超车等);

如何进行感知?

由于感知是为了模仿人眼获取周围的环境信息,那就必然需要用到传感器来完成信息的采集工作;目前在自动驾驶领域中用到的传感器包括:摄像头(camera)、激光雷达(lidar)、毫米波雷达(radar)等;
可以看到传感器的种类众多且成本参差不齐,所以如何使用这些传感器进行感知任务,各个自动驾驶厂商都有各自的解决方案;
纯视觉的感知方案
目前Tesla是纯视觉感知方案的典型代表;
纯视觉感知方案的优缺点也很明显:优点:价格成本很低;缺点:摄像头采集到的图片是2D的,缺少深度信息,深度信息需要靠算法学习得到,缺少鲁棒性;
多传感器融合的感知方案
目前大多数厂商采用的都是多传感器融合的解决方案;其优缺点是:优点:能够充分利用不同工作原理的传感器,提升对不同场景下的整体感知精度,也可以在某种传感器出现失效时,其他传感器可以作为冗余备份,提高系统的鲁棒性;缺点:由于采用多种传感器价格相比纯视觉高很多;

多传感器融合的感知方案

传感器后融合
所谓后融合,是指各传感器针对目标物体单独进行深度学习模型推理,从而各自输出带有传感器自身属性的结果;每种传感器的识别结果输入到融合模块,融合模块对各传感器在不同场景下的识别结果,设置不同的置信度,最终根据融合策略进行决策。
整体流程图如下:
图源:https://mp.weixin.qq.com/s/bmy9EsQaLNPQQKt9mPTroA
优点:不同的传感器都独立进行目标识别,解耦性好,且各传感器可以互为冗余备份;同时后融合方案便于做标准的模块化开发,把接口封装好,提供给主机厂“即插即用”;对于主机厂来说,每种传感器的识别结果输入到融合模块,融合模块对各传感器在不同场景下的识别结果,设置不同的置信度,最终根据融合策略进行决策。
缺点:存在“时间上的感知不连续”及“空间上的感知碎片化”
空间上的感知碎片化
由于车身四周的lidar、camera角度的安装问题,多个传感器实体无法实现空间域内的连续覆盖和统一识别,导致摄像头只捕捉到了目标的一小部分,无法根据残缺的信息作出正确的检测结果,从而使得后续的融合效果无法保证。
时间上的感知不连续
摄像头采集到的结果是以帧为单位的,常用的感知方法是把连续单帧的检测结果串联起来,类似后融合的策略,无法充分利用时序上的有用信息。
传感器前融合
所谓前融合,是将各个传感器采集到的数据汇总到一起,经过数据同步后,对这些原始数据进行融合。
整体流程图如下:
图源:https://mp.weixin.qq.com/s/bmy9EsQaLNPQQKt9mPTroA
优点:让数据更早的做融合,使数据更有关联性;比如把激光雷达的点云数据和摄像头的像素级数据进行融合,数据的损失也会比较少。
缺点:由于不同传感器获取的数据(摄像图获取的像素数据以及激光雷达获取的点云数据),其坐标系是不同的;视觉数据是2D空间,而激光雷达的点云数据是3D空间。所以在异构数据的融合时,有两种途径:途径一:在图像空间利用点云数据提供深度信息;途径二:在点云空间利用视觉数据提供语义特征,进行点云染色或特征渲染;
图源:https://mp.weixin.qq.com/s/bmy9EsQaLNPQQKt9mPTroA
所以为了保证将不同坐标系下的数据(像素数据、点云数据)转换到同一坐标系下进行数据融合方便后续的感知任务,BEV(Bird Eye View)视角下的感知逐渐受到广泛的关注。
传感器中融合
所谓中融合,就是先将各个传感器采集到的数据通过神经网络提取数据的特征,再对神经网络提取到的多种传感器特征进行特征级的融合,从而更有可能得到最佳感知结果。对异构数据提取到的特征在BEV空间进行特征级的融合,一来数据损失少,二来算力消耗也较少(相对于前融合),所以针对BEV视角下的感知任务,采用中融合的策略比较多。

BEV视角下的感知任务范式

  • 将摄像头数据(2D图片)输入到特征提取网络中完成多个摄像头数据的特征提取;
  • 将所有摄像头数据提取到的特征通过网络学习的方式映射到BEV空间下;
  • 在BEV空间下,进行异构数据的融合,将图像数据在BEV空间下映射的特征与激光雷达点云特征进行融合;(可选,如BEVFormer仅用6个摄像头构建BEV空间特征)
  • 进行时序融合,融合前几个时刻的特征,增强感知能力;(个人认为:引入时序特征后可以在一定程度上解决遮挡问题)
  • 根据获得到BEV特征,用于下游任务;(车道线检测、障碍物检测、3D目标检测等子任务,相当于整个模型是一个多任务学习模型)

BEV视角下的感知具有的优势

  • 跨摄像头融合和异构数据融合更容易实现
跨摄像头融合或者异构数据进行融合时,由于不同数据其表示的坐标系不同,需要用很多后处理规则去关联不同传感器的感知结果,流程非常复杂。在BEV空间内做融合后,通过网络自主学习映射规则,产生BEV特征用于感知下游任务,算法实现更加简单,并且BEV空间内视觉感知到的物体大小和朝向也都能直接得到表达。
  • 时序融合更容易实现
在构建BEV空间时,可以很容易地融合时序信息,使得获取的BEV特征可以更好地实现下游的一些感知任务,如测速任务。
  • 一定程度上缓解感知任务中的遮挡问题
传统的2D感知任务只能感知看得见的目标,对于遮挡完全无能为力,而在BEV空间内,可以基于先验知识或者利用时序融合,对被遮挡的区域进行预测,从而“脑补”出被遮挡区域可能存在物体。虽然“脑补”出的物体,有一定“想象”的成分,但这对于下游的规控模块仍有很多好处。
  • 方便多任务学习
使用传统方法做感知任务时,需要依次做目标识别、追踪和运动预测,更像是个“串行系统”,上游的误差会传递到下游从而造成误差累积;而在BEV空间内,感知和运动预测在统一空间内完成,因而可以通过神经网络直接做端到端优化,“并行”出结果,这样既可以避免误差累积,也大大减少了人工逻辑的作用,让感知网络可以通过数据驱动的方式来自学习,从而更好地实现功能迭代。

转载自知乎@zhFang1999,文中观点仅供分享交流,不代表本公众号立场,如涉及版权等问题,请您告知,我们将及时处理。

-- END --

智驾最前沿 「智驾最前沿」深耕自动驾驶领域技术、资讯等信息,解读行业现状、紧盯行业发展、挖掘行业前沿,致力于助力自动驾驶发展与落地!公众号:智驾最前沿
评论
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 114浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 83浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 42浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 71浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 125浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 141浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 66浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 170浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦