无掩模光刻解决了向异构集成和3D封装的转变

在本文中,我们研究了传统光刻方法在先进封装中的局限性,并评估了一种用于后端光刻的新型无掩模曝光。


编译来源:3DInCites

从 2D 扩展到异构集成和 3D 封装对于提高半导体器件性能变得越来越重要。近年来,先进封装技术的复杂性和可变性都在增加,以支持更广泛的设备和应用。在本文中,我们研究了传统光刻方法在先进封装中的局限性,并评估了一种用于后端光刻的新型无掩模曝光。

 后端光刻的新挑战

随着异构集成越来越多地用于半导体开发和创新,后端光刻技术的要求也在不断增长,如图 1 所示。封装内更多的再分布层 (RDL) 推动了对更细的RDL线/间距(L/S)以及更小的微凸点和微柱的关键尺寸的需求。这使得封装和基板级别的集成设计规则更加严格,这增加了叠加和芯片移动的风险,可能导致寄生效应和产量损失。

与此同时,为了提高封装性能,I/O 的数量也在不断增长,从而导致更大的硅片占用空间和光罩缝合。这推动了对 I/O 凸块和互连减小间距的需求。后端光刻也需要在垂直侧壁图案中提高覆盖精度和高焦深 (DoF)。还必须满足新的要求,包括尽量减少由于扇出晶圆级封装 (FoWLP) 中的晶圆变形而导致的图案失真和芯片移位,以及在保持高DoF和高分辨率的同时在厚和薄抗蚀剂上进行图案制作。

图 1:先进的封装架构正在推动 I/O 密度的大幅增加和 I/O 间距的减小,这对后端光刻提出了新的要求(来源:Yole Développement )。

尽管从较小的小芯片重新集成较大的裸片已显示出优于单片 SoC 技术的众多优势,包括更大的设计自由度,但这种方法将复杂性转移到了集成中,并随之转移到了光刻工艺中。小芯片设计和各种集成方案(硅上、嵌入或封装)的持续创新可能包括多个图案层次,这增加了集成的复杂性。

在后端光刻中,设计灵活性和同时采用芯片和晶圆级设计的能力的重要性增加,也必须得到解决,以缩短开发周期,支持各种先进的封装平台。

 传统图案化方法的回顾

有几种曝光方法可用于高级封装应用(图 2)。其中包括掩模对准器,它通过掩模将图案直接曝光在基板上,掩模与光敏、涂有抗蚀剂的晶片非常接近。最小图案尺寸由掩模和晶圆之间的曝光间隙决定的。掩模和抗蚀剂表面的紧密接近将使图案更小;但是,间隙太近会导致掩模污染并导致良率问题。

图 2:用于高级封装应用的各种后端光刻方法。

另一种曝光方法是生产线后端 (BEOL) 步进器,它再看掩模/掩模版和晶圆之间使用投影光学器件寸,使其尺寸小于掩模对准器所能达到的尺寸。然而,由于它是一种基于掩模的曝光方法,步进机必须处理由模塑和其他因素引起的芯片放置和芯片移位变化的不准确性。此外,静态曝光系统的给定光罩尺寸和光学尺寸限制了曝光区域。这对于较大的芯片中介层制造来说尤其具有挑战性,其中缝合线或掩模版曝光场的不匹配重叠区域会影响 RDL 内的电气性能。

此外,与掩模相关的成本对整个图案化工艺来说是一个重要的额外成本因素。任何先进的产品设计组合,例如异构集成应用程序中的设计组合,都会增加多个掩模的层次。因此,掩模和掩模库存/清洁室存储在整个生产成本中占了很高的比例。汞灯的更换成本加起来会很高。新的物理掩模组的等待时间,以及高产品组合设计的新设计概念的整体证明,本质上会导致传统的基于掩模的生产环境的开发周期延长。

为了解决异构集成的光刻需求,我们开发了一种名为LITHOSCALE的新型无掩模曝光系统,该系统采用无掩模曝光 (MLE) 技术。LITHOSCALE结合了高分辨率(<2μm L/S),没有曝光场的限制,强大的数字处理,实现了实时数据传输和即时曝光,以及高度可扩展的设计,支持大批量的生产。该系统的高精度与无失真的高强度光学元件和亚纳米范围的载物台运动精度相匹配,从而确保在整个基板上进行无缝投影。LITHOSCALE 还采用动态对准模式和带自动对焦的芯片级补偿,以适应基板材料和表面变化。

图 3:LITHOSCALE 独特的集群曝光配置可以轻松添加曝光头,以适应不同的吞吐量需求和基板尺寸。

这种无掩模曝光技术以平行扫描方式曝光一个或多个宽条,并通过紧密集成的集群写入头配置适应任何晶片尺寸,直至面板,如图 3 所示。一个多波长的高功率紫外光源可以支持所有市面上的抗蚀剂。吞吐量与布局复杂性和分辨率无关,而且无论光刻胶极性如何,都能实现相同的图案化性能。最后,数字掩膜图案以亚微秒级的时间精度被投射到基片表面。像大多数现代镜头一样,LITHOSCALE成像系统是衍射限制的,它支持+/-12μm的景深(DoF)。

除了宽DoF之外,亚微米级精确自动对焦将可用的动态对焦范围扩大到 100μm 以上。通过卡盘定位和晶片夹持,能在更大范围的晶片位置上控制焦点位置的能力,从而能够补偿弯曲和翘曲的基板。

 动态曝光方法和主动模位补偿

由于基于掩模的光刻方法无法控制小于曝光场的失真,因此它们面临非线性、高阶基材畸变和芯片移位相关问题的困难,尤其是在晶圆上进行芯片重组后,这是典型的扇出晶圆级封装(FOWLP)。使用 LITHOSCALE 上的动态对准模式进行光刻实验,以评估晶圆级失真补偿的性能以及无掩模曝光系统上的主动芯片图案化的性能。

图 4:高级失真补偿流程示意图。

图4直观地显示了高级失真校正功能和动态对齐模式的工艺流程。动态对准包括全局和多点晶圆对准选项,通常可以随机放置多达 16 个对准标记(标记为蓝色和黄色)为了覆盖基板上最关键的区域并补偿全局失真。在未对准测量之后,位移矢量会进一步并行编译,然后再对设计进行实时插值和渲染。

因此,曝光的图案得到了全部的误差补偿,就不会产生重叠或未覆盖的区域——可能有最小程度的错位,这不影响图案化工艺的水平。在通过动态对齐模式补偿多点对齐的16 个标记(黄色)的实际位置后,显示了在极端非典型错位(用红色箭头指示)示例之后的补偿布局(深灰色)的可视化结果。

图 5:Die 级补偿流程示意图。

当考虑在晶圆上重构后引起的芯片失真误差时,高级失真功能也应在芯片层面上应用,其中主动补偿和重新布线结果严格依赖于外部计量数据。失真补偿算法包括旋转、缩放、剪切和平移(移位)的数学校正。对于模具放置误差补偿,该模型将模具内的变形限制在模具的刚体上,这通常由每个芯片的两个(外部)对齐点表示。由于转换过程的即时性,动态二进制图案生成在曝光前对每个基板单独从外部获取的每个芯片的计量数据进行补充,以补偿由处理或预处理引起的重叠/定位误差,排除了潜在的热影响。芯片级补偿的简化数据完整性流程如图 5 所示。

同时,LITHOSCALE 可以实现实时个性化晶圆级布局以及同时构建单个芯片布局;特别是功能性和直接可读的加密代码或主动图案化的熔断图,以优化器件分档,用于工艺或器件跟踪和记录,从而提高整体良率。

 子网格中的图案化模块化和重要定位

LITHOSCALE的分辨率针对典型的后端分辨率,可精细控制照射线及其间隙 (L/S <2μm),同时保持 CD 均匀性 (CDU <10% CD) 和任意结构的位置准确性。这种精度与系统的无失真光学元件和载物台放置精度相匹配,可确保在整个基板上进行无缝投影。曝光可以在强度控制和精确的光源光谱调谐方面以非常高的自由度进行,以实现最佳的吸收和可靠的处理,适用于广泛的商业化的以及新型的光刻胶。

图 6:SEM 结果拼贴:在 1μm 厚的正AZ MIR 701 上进行线空间分辨率测试(上),在 2μm 厚的负 AZ nLOF 上进行线空间分辨率测试(下)。

曝光光源在 375nm 和 405nm 的波长光谱下工作,允许混合和匹配波长以模仿已知良好的工艺配方或根据特定客户需求定制曝光。两种波长可以同时以任意混合物形式应用,因此可以实现薄抗蚀剂图案化(包括正性、负性、聚酰亚胺、可图案化电介质、干膜甚至 PCB 材料),并且还支持在晶圆中通常遇到的高纵横比的厚光刻胶曝光级封装、3D MEMS 图案化、微流体和集成光子学应用。图6显示了一系列SEM图像,上面是1μm厚的AZ MIR 701正极抗蚀剂上的标准线空间分辨率目标,而下面的结果显示了2μm厚的负极抗蚀剂AZ nLOF上的线空间分辨率测试。在这两种情况下,1.5μm的L/S结果是通过进一步的工艺优化实现的,涉及到减少表面反射效应,这可以通过应用抗反射涂层或修改基片材料特性来实现。

图 7:(A) 8μm 厚 TOK P-W1000T 的基线评估,(B) 具有 5μm L/S 的曲流,(C) 1:2 间距变化,(D) 水平和垂直方向的 L/S 变化与比率1:1、1:2、1:3、1:4。

DoF也可以被精细控制,以实现陡峭的侧壁,从而保持所需的抗蚀剂的3D轮廓,或防止边缘顶和脚。大的工作距离和自动适应性聚焦确保了整个曝光面图案的均匀性。常用的TOK P-W1000T抗蚀剂用于细线和芯线RDL的制作,以展示各种线和间距的图案性能以及侧壁图案的质量。图7显示了基线评估的SEM图像的例子,展示了:(A)针对8μm薄膜厚度的2μm L/S分辨率,(B)带有蜿蜒图案的5μm L/S分辨率,(C)1:2比例的间距变化,以及(D)水平和垂直方向的1:1、1:2、1:3和1:4比例的L/S变化。

 概括

3D 和异构集成的采用导致封装复杂性和可用封装选项的数量增加。基于掩模的光刻解决方案不再适用于许多先进的封装应用,因为它们无法在分辨率和成本之间做出必要的权衡,受到曝光场大小的限制,并且/或者面临基板变形和芯片移位相关问题的困难。采用 MLE 技术的 LITHOSCALE 通过将高分辨率与无曝光场限制、可实现实时数据传输和立即曝光的强大数字处理以及高度可扩展的设计相结合,解决了先进封装的光刻需求,而无需基于掩模的高成本曝光方法。

半导体工艺与设备 1、半导体工艺研究、梳理和探讨。 2、半导体设备应用、研发和进展。 3、建华高科半导体设备推广,包括:曝光机、探针台、匀胶机和切片机。 4、四十五所半导体设备推广,包括:湿化学设备、先进封装设备、电子元器件生产设备等。
评论
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 55浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 198浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 41浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 112浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 399浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 444浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 182浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 186浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 339浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 101浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 122浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦