干货|5个步骤详细讲解控制环路设计的解决思路

电子工程世界 2022-08-19 07:30

▲ 更多精彩内容 请点击上方蓝字关注我们吧!


作为工程师,每天接触的是电源的设计工程师,发现不管是电源的老手、高手、新手,几乎对控制环路的设计一筹莫展,基本上靠实验。靠实验当然是可以的,但出问题时往往无从下手,在这里想以反激电源为例子(在所有拓扑中环路是最难的,由于RHZ 的存在),大概说一下怎么计算,至少使大家在有问题时能从理论上分析出解决问题的思路。


01
一些基本知识,零,极点的概念


这里给出了右半平面零点的原理表示,这对用PSPICE做仿真很有用,可以直接套用此图。



递函数自己写吧,正好锻炼一下,把输出电压除以输入电压就是传递函数。

bode图可以简单的判定电路的稳定性,甚至可以确定电路的闭环响应,就向下面的图中表示的。零、极点说明了增益和相位的变化。


02
单极点补偿


适用于电流型控制和工作在DCM方式并且滤波电容的ESR零点频率较低的电源,其主要作用原理是把控制带宽拉低,在功率部分或加有其他补偿的部分的相位达到180度以前使其增益降到0dB,也叫主极点补偿。



双极点、单零点补偿,适用于功率部分只有一个极点的补偿。如:所有电流型控制和非连续方式电压型控制。



三极点、双零点补偿适用于输出带LC谐振的拓扑,如所有没有用电流型控制的电感电流连续方式拓扑。



C1的主要作用是和R2提升相位的,当然提高了低频增益,在保证稳定的情况下是越小越好。

C2增加了一个高频极点,降低开关躁声干扰。

串联C1实质是增加一个零点,零点的作用是减小峰值时间,使系统响应加快,并且死循环越接近虚轴,这种效果越好。所以理论上讲,C1是越大越好。但要考虑,超调量和调节时间,因为零点越距离虚轴越近,死循环零点修正系数Q越大,而Q与超调量和调节时间成正比,所以又不能大。总之,考虑死循环零点要折衷考虑。

并联C2实质是增加一个极点,极点的作用是增大峰值时间,使系统响应变慢。所以理论上讲,C2也是越大越好。但要考虑到,当零极点彼此接近时,系统响应速度相互抵消。从这一点就可以说明,我们要及时响应的系统C1大,至少比C2大。


03
环路稳定的标准


只要在增益为1时(0dB)整个环路的相移小于360度,环路就是稳定的。

但如果相移接近360度,会产生两个问题:1) 相移可能因为温度,负载及分布参数的变化而达到360度而产生震荡;2) 接近360度,电源的阶跃响应(瞬时加减载)表现为强烈震荡,使输出达到稳定的时间加长,超调量增加。如下图所示具体关系:



所以环路要留一定的相位裕量,如图Q=1时输出是表现最好的,所以相位裕量的最佳值为52度左右,工程上一般取45度以上。如下图所示:


这里要注意一点,就是补偿放大器工作在负反馈状态,本身就有180度相移,所以留给功率部分和补偿网络的只有180度。幅值裕度不管用上面哪种补偿方式都是自动满足的,所以设计时一般不用特别考虑。

由于增益曲线为-20dB/decade时,此曲线引起的最大相移为90度,尚有90度裕量,所以一般最后合成的整个增益曲线应该为-20dB/decade部分穿过0dB。在低于0dB带宽后,曲线最好为-40dB/decade,这样增益会迅速上升,低频部分增益很高,使电源输出的直流部分误差非常小,既电源有很好的负载和线路调整率。


04
如何设计控制环路?


经常主电路是根据应用要求设计的,设计时一般不会提前考虑控制环路的设计。我们的前提就是假设主功率部分已经全部设计完成,然后来探讨环路设计。环路设计一般由下面几过程组成:

1) 画出已知部分的频响曲线;
2) 根据实际要求和各限制条件确定带宽频率,既增益曲线的0dB频率;
3) 根据步骤 2) 确定的带宽频率决定补偿放大器的类型和各频率点,使带宽处的曲线斜率为20dB/decade,画出整个电路的频响曲线。

上述过程也可利用相关软件来设计:如pspice、POWER-4-5-6。一些解释:



已知部分的频响曲线是指除Kea(补偿放大器)外的所有部分的乘积,在波得图上是相加。

环路带宽当然希望越高越好,但受到几方面的限制:a) 香农采样定理决定了不可能大于1/2Fs;b) 右半平面零点(RHZ)的影响,RHZ随输入电压、负载电感量大小而变化,几乎无法补偿,我们只有把带宽设计的远离它,一般取其1/4-1/5;c) 补偿放大器的带宽不是无穷大,当把环路带宽设的很高时会受到补偿放大器无法提供增益的限制,及电容零点受温度影响等。所以一般实际带宽取开关频率的1/6-1/10。


05
反激设计实例


条件:输入85-265V交流,整流后直流100-375V输出12V/5A
初级电感量:370uH
初级匝数:40T    
次级:5T
次级滤波电容:1000uFX3=3000uF
震荡三角波幅度:2.5V   
开关频率:100K

电流型控制时,取样电阻取0.33欧姆。下面分电压型和峰值电流型控制来设计此电源环路,所有设计取样点在输出小LC前面。如果取样点在小LC后面,由于受LC谐振频率限制,带宽不能很高。1)电流型控制,假设用3842,传递函数如下:



此图为补偿放大部分原理图。RHZ的频率为33K,为了避免其引起过多的相移,一般取带宽为其频率的1/4-1/5,我们取1/4为8K。


分两种情况:

A) 输出电容ESR较大



输出滤波电容的内阻比较大,自身阻容形成的零点比较低,这样在8K处的相位滞后比较小。Phanseangle=arctan(8/1.225)-arctan(8/0.033)-arctan(8/33)=--22度。

另外可看到在8K处增益曲线为水平,所以可以直接用单极点补偿,这样可满足-20dB/decade的曲线形状.省掉补偿部分的R2、C1。

设Rb为5.1K,则R1=[(12-2.5)/2.5]*Rb=19.4K。

8K处功率部分的增益为-20*log(1225/33) 20*log19.4=-5.7dB因为带宽8K,即8K处0dB。所以8K处补偿放大器增益应为5.7dB,5.7-20*log(Fo/8)=0Fo为补偿放大器0dB增益频率Fo=1/(2*pi*R1C2)=15.42。

C2=1/(2*pi*R1*15.42)=1/(2*3.14*19.4*15.42)=0.53nF相位裕度:180-22-90=68度。



输出滤波电容的内阻比较大,自身阻容形成的零点比较高,这样在8K处的相位滞后比较大。

Phanseangle=arctan(8/5.3)-arctan(8/0.033)-arctan(8/33)=-47度,如果还用单极点补偿,则带宽处相位裕量为180-90-47=43度,偏小,用2型补偿来提升。

三个点的选取,第一个极点在原点,第一的零点一般取在带宽的1/5左右,这样在带宽处提升相位78度左右。此零点越低,相位提升越明显,但太低了就降低了低频增益,使输出调整率降低,此处我们取1.6K。

第二个极点的选取一般是用来抵消ESR零点或RHZ零点引起的增益升高,保证增益裕度。我们用它来抵消ESR零点,使带宽处保持-20db/10decade的形状,我们取ESR零点频率5.3K。


数值计算:


8K处功率部分的增益为-20*log(5300/33) 20*log19.4=-18dB,因为带宽8K,即最后合成增益曲线8K处0dB,所以8K处补偿放大器增益应为18dB,5.3K处增益=18 20log(8/5.3)=21.6dB水平部分增益=20logR2/R1=21.6。

推出R2=12*R1=233Kfp2=1/2*pi*R2C2;
推出C2=1/(2*3.14*233K*5.4K)=127pF.fz1=1/2*pi*R2C1;
推出C1=1/(2*3.14*233K*1.6K)=0.427nF。


相位



fo为LC谐振频率,注意Q值并不是用的计算值而是经验值,因为计算的Q无法考虑LC串联回路的损耗(相当于电阻),包括电容ESR、二极管等效内阻、漏感和绕组电阻及趋附效应等,在实际电路中Q值几乎不可能大于4-5。



由于输出有LC谐振,在谐振点相位变动很剧烈,很快接近180度,所以需要用3型补偿放大器来提升相位。其零、极点放置原则是这样的,在原点有一极点来提升低频增益,在双极点处放置两个零点,这样在谐振点的相位为-90 (-90) 45 45=-90。在输出电容的ESR处放一极点,来抵消ESR的影响,在RHZ处放一极点来抵消RHZ引起的高频增益上升。

元件数值计算,为方便我们把3型补偿的图在重画一下。


蓝色为功率部分,绿色为补偿部分,红色为整个开环增益。如果相位裕量不够时,可适当把两个零点位置提前,也可把第一可极点位置放后一点。

同样假设光耦CTR=1,如果用CTR大的光耦,或加有其他放大时,如同时用IC的内部运放,只需要在波得图上加一个直流增益后,再设计补偿部分即可。这时要求把IC内部运放配置为比例放大器,如果再在内部运放加补偿,就稍微麻烦一点,在图上再加一条补偿线结束。想大家看完后即使不会计算,出问题时也应该知道改哪里。   

免责声明:本文系网络转载,版权归原作者所有。如本文所用视频、图片、文字如涉及作品版权问题,请在文末留言告知,我们将在第一时间处理!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。


推荐阅读

干货 | 示波器探头的作用及工作原理
干货|MOS管损坏之谜
干货|寻根究底:PFC电路旁路二极管作用及MOSFET常见失效模式
干货|退耦电容为什么通常选择100nF,而不是其他电容值?



添加微信回复“进群”

拉你进技术交流群!

国产芯|汽车电子|物联网|新能源|电源|工业|嵌入式…..  

众号内回复您想搜索的任意内容,如问题关键字、技术名词、bug代码等,就能轻松获得与之相关的专业技术内容反馈。快去试试吧!


如果您想经常看到我们的文章,可以进入我们的主页,点击屏幕右上角「三个小点」,点击「设为星标」。

欢迎扫码关注


电子工程世界 关注EEWORLD电子工程世界,即时参与讨论电子工程世界最火话题,抢先知晓电子工程业界资讯。
评论
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 130浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 138浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 70浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 124浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 102浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 112浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 95浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 123浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 82浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 78浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦