Virtex7Microblaze下DDR3测试

FPGA技术江湖 2022-08-15 12:53

  这篇文章我们讲一下Virtex7上DDR3的测试例程,Vivado也提供了一个DDR的example,但却是纯Verilog代码,比较复杂,这里我们把DDR3的MIG的IP Core挂在Microblaze下,用很简单的程序就可以进行DDR3的测试。

  1. 新建工程,FPGA选型为xc7v690tffg-1761。创建Block Design,命名为Microblaze_DDR3。

ddr1
  1. 在bd文件中加入Mircoblaze。

ddr2
  1. 点击Run Block Automation

ddr3
  1. 按照默认配置,确定即可。

ddr4
  1. 出现下面的界面。

ddr5
  1. 添加MIG的IP Core

ddr6
  1. 开始配置DDR,选择Create Design.

ddr7
  1. 这一步是选择Pin脚兼容的FPGA,我们不做选择,直接Next。

ddr8
  1. 选择DDR3.

ddr9
  1. ①选择DDR的工作频率,我们这里让DDR3的频率为1600MHz,所以时钟频率是800MHz;
      ②选择器件,根据实际情况来选择即可;
      ③数据位宽,也是根据板卡上的实际位宽进行选择;
      ④默认即可。

ddr10
  1. 选择AXI总线的位宽,这里我们选择512.

ddr11
  1. ①选择输入时钟频率,虽然DDR的工作时钟是800MHz(在第10步中选择),但我们可以输入一个低频时钟,然后MIG的IP Core中会倍频到所需频率。
     ②MIG的IP Core默认会输出一个200MHz的时钟,如果还需要其他的时钟输出,可以在这里选择。其他选择默认即可。

ddr12
  1. ①选择输入时钟的方式,这里的输入时钟就是我们上一个页面中的设置的200MHz的输入时钟,如果选择差分或单端,则输入通过FPGA的管脚输入200MHz时钟到MIG的IP Core;如果选择No Buffer,则可以通过FPGA内部的MMCM输出一个200MHz时钟到MIG;这里我选择了No Buffer;
     ②选择参考时钟的方式,参考时钟频率固定是200MHz,如果选择如果选择差分或单端,则输入通过FPGA的管脚输入200MHz时钟到MIG的IP Core;如果选择No Buffer,则可以通过FPGA内部的MMCM输出一个200MHz时钟到MIG;如果在前一个页面中选择了输入时钟频率是200MHz,则这边会出现一个Use System Clock的选项,因为此时两个时钟频率是相同的嘛。这里我选择了Use System Clock;
     ③设置输入复位信号的极性,这个要特别注意,尽量选择高有效,因为无论我们选择高复位还是低复位,它的端口名都叫sys_rst,会让人直观就觉得是高复位。我第一次使用时,就没注意到这个选项,默认为低,但在MIG的端口上看到sys_rst这个名字我以为是高有效,结果DDR一直不通。
    (备注:对于绝大多数的Xilinx的IP,如果是低有效的复位,端口名字中肯定是有N这个标志的)

ddr13
  1. 这个页面不需要操作。

ddr14
  1. 下面开始分配管脚,我比较习惯于选第二个,无论是第一次分配还是后面再重新分配。

  2. 在这一页,可以根据原理图一一分配管脚;如果有现成的xdc/ucf文件,可以直接通过Read XDC/UCF读入,然后再选择Validate验证管脚分配是否正确。

ddr16

如果Validate成功,则会提示下面的界面。

ddr17
  1. 如果在第13步中,选择了差分或单端输入,则这里会出现下面第一个图;如果选择了No buffer,则这里会出现第二个图。很容易理解,如果选择了通过外部管脚输入时钟,那这里就是让选择具体的管脚。并不是所有的MRCC或者SRCC管脚都可以选的,只能选择跟DDR管脚同一片区域的(比如DDR放在了Bank31 32 33,那么这里的时钟输入管脚就不能选择Bank15)。

ddr18

如果不选择复位信号管脚,就可以通过FPGA内部逻辑来输入复位。

ddr19

后面一路Next就完成了MIG IP Core的配置了。

  1. 在bd文件中,加入AXI Interconnect、UARTLite和Interrupt(如果不加中断模块,Microblaze的程序跑不起来),串口用来打印信息。然后再添加各输入输出端口,把内部的线连接起来,如下图所示。

ddr20

但这个图里的线太多,看着不直观,我们把Microblaze模块、mdm_1、rst_clk_wiz和local_memory模块(上图中红框中的4个模块)放到一个子模块中,取名mb_min_sys,如下图。

ddr21
  1. 创建顶层的top文件,并在top文件中例化bd文件。可以把init_calib_complete和mmcm_locked这两个信号抓出来,在下载程序后,这两个信号必须都是高,不然DDR就工作不正常,肯定是中间某个环节配置有问题。具体top.v文件内容见附录

  2. 将工程综合、实现、生成bit文件,并导出Hardware。

ddr22
  1. 打开sdk,新建Application Project,并按下面的步骤依次操作。

ddr23
ddr24

再选择模板为HelloWorld,最后Finish。

ddr25
  1. 修改helloworld.c,见附录,重新编译,如果提示overflowed则把lscript.ld文件中的size改大。

ddr26

运行程序后,可以看到串口打印信息如下:

ddr27

附录

// top.v
`timescale 1ns / 1ps

module top
   (
  input clk_n,
  input clk_p,
  input UART_rxd,
  output UART_txd,
  output [15:0]ddr3_addr,
  output [2:0]ddr3_ba,
  output ddr3_cas_n,
  output [0:0]ddr3_ck_n,
  output [0:0]ddr3_ck_p,
  output [0:0]ddr3_cke,
  output [0:0]ddr3_cs_n,
  output [7:0]ddr3_dm,
  inout [63:0]ddr3_dq,
  inout [7:0]ddr3_dqs_n,
  inout [7:0]ddr3_dqs_p,
  output [0:0]ddr3_odt,
  output ddr3_ras_n,
  output ddr3_reset_n,
  output ddr3_we_n
  );

  wire axi4_clk;
  wire axil_clk;
  reg axi4_rstn;
  wire axil_rstn;
  wire init_calib_complete;
  wire mmcm_locked;
  wire ddr_rst;

  always @ ( posedge axi4_clk )
  begin
      axi4_rstn <= axil_rstn;
  end 

  reg [8:0] cnt;
  always @ ( posedge axil_clk )
  begin
      if(~axil_rstn)
          cnt <= 'd0;
      else if(cnt=='d256)
          cnt <= cnt ;
      else 
          cnt <= cnt + 1'b1;
  end 

  assign ddr_rst = (cnt=='d256)?1'b0:1'b1;

  MicroBlaze_DDR3 MicroBlaze_DDR3_i
       (.UART_rxd                   (UART_rxd             ),
        .UART_txd                   (UART_txd             ),
        .axil_clk                   (axil_clk             ),
        .axi4_clk                   (axi4_clk             ),
        .axi4_rstn                  (axi4_rstn            ),
        .clk_in_clk_n               (clk_n                ),
        .clk_in_clk_p               (clk_p                ),
        .ddr3_addr                  (ddr3_addr            ),
        .ddr3_ba                    (ddr3_ba              ),
        .ddr3_cas_n                 (ddr3_cas_n           ),
        .ddr3_ck_n                  (ddr3_ck_n            ),
        .ddr3_ck_p                  (ddr3_ck_p            ),
        .ddr3_cke                   (ddr3_cke             ),
        .ddr3_cs_n                  (ddr3_cs_n            ),
        .ddr3_dm                    (ddr3_dm              ),
        .ddr3_dq                    (ddr3_dq              ),
        .ddr3_dqs_n                 (ddr3_dqs_n           ),
        .ddr3_dqs_p                 (ddr3_dqs_p           ),
        .ddr3_odt                   (ddr3_odt             ),
        .ddr3_ras_n                 (ddr3_ras_n           ),
        .ddr3_reset_n               (ddr3_reset_n         ),
        .ddr3_we_n                  (ddr3_we_n            ),
        .ddr_rst                    (ddr_rst              ),
        .init_calib_complete        (init_calib_complete  ),
        .mmcm_locked                (mmcm_locked          ),
        .reset                      (1'b0                 ),
        .axil_rstn                  (axil_rstn            )
      );
endmodule
// helloworld.c
#include 
#include "platform.h"
#include "xil_printf.h"


int main()
{
    init_platform();
    print("-------ddr3 test----------------------\n\r");
    unsigned int *DDR_MEM = (unsigned int*) XPAR_MIG_7SERIES_0_BASEADDR;
    // write data to ddr3
    *DDR_MEM = 0x12345678;
    // read back
    unsigned int value = *(unsigned int *) XPAR_MIG_7SERIES_0_BASEADDR;

    xil_printf("value = 0x%x\n", value);

    cleanup_platform();
    return 0;
}


- End -

往期精选 

 
 

【免费】FPGA工程师人才招聘平台

FPGA人才招聘,企业HR,看过来!

系统设计精选 | 基于FPGA的实时图像边缘检测系统设计(附代码)

基于原语的千兆以太网RGMII接口设计

时序分析理论和timequest使用_中文电子版

求职面试 | FPGA或IC面试题最新汇总篇

FPGA图像处理专题课新增Vivado部分内容,线上线下均可报名

FPGA时序分析及约束专题课新增Vivado部分内容,线上线下均可报名

资料汇总|FPGA软件安装包、书籍、源码、技术文档…(2022.05.15更新)

FPGA技术江湖广发江湖帖

无广告纯净模式,给技术交流一片净土,从初学小白到行业精英业界大佬等,从军工领域到民用企业等,从通信、图像处理到人工智能等各个方向应有尽有,QQ微信双选,FPGA技术江湖打造最纯净最专业的技术交流学习平台。


FPGA技术江湖微信交流群

加群主微信,备注职业+方向+名字进群


FPGA技术江湖QQ交流群

备注地区+职业+方向+名字进群

FPGA技术江湖 任何技术的学习就好比一个江湖,对于每一位侠客都需要不断的历练,从初入江湖的小白到归隐山林的隐世高人,需要不断的自我感悟自己修炼,让我们一起仗剑闯FPGA乃至更大的江湖。
评论 (0)
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 434浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 330浏览
  • 飞凌嵌入式作为龙芯合作伙伴,隆重推出FET-2K0300i-S全国产自主可控工业级核心板!FET-2K0300i-S核心板基于龙芯2K0300i工业级处理器开发设计,集成1个64位LA264处理器,主频1GHz,提供高效的计算能力;支持硬件ECC;2K0300i还具备丰富的连接接口USB、SDIO、UART、SPI、CAN-FD、Ethernet、ADC等一应俱全,龙芯2K0300i支持四路CAN-FD接口,具备良好的可靠性、实时性和灵活性,可满足用户多路CAN需求。除性价比超高的国产处理器外,
    飞凌嵌入式 2025-05-07 11:54 91浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 382浏览
  • 硅二极管温度传感器是一种基于硅半导体材料特性的测温装置,其核心原理是利用硅二极管的电学参数(如正向压降或电阻)随温度变化的特性实现温度检测。以下是其工作原理、技术特点及典型应用:一、工作原理1、‌PN结温度特性‌硅二极管由PN结构成,当温度变化时,其正向电压 VF与温度呈线性负相关关系。例如,温度每升高1℃,VF约下降2 mV。2、‌电压—温度关系‌通过jing确测量正向电压的微小变化,可推算出环境温度值。部分型号(如SI410)在宽温域内(如1.4 K至475 K)仍能保持高线性度。
    锦正茂科技 2025-05-09 13:52 236浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 443浏览
  • 温度传感器的工作原理依据其类型可分为以下几种主要形式:一、热电阻温度传感器利用金属或半导体材料的电阻值随温度变化的特性实现测温:l ‌金属热电阻‌(如铂电阻 Pt100、Pt1000):高温下电阻值呈线性增长,稳定性高,适用于工业精密测温。l ‌热敏电阻‌(NTC/PTC):NTC 热敏电阻阻值随温度升高而下降,PTC 则相反;灵敏度高但线性范围较窄,常用于电子设备温控。二、热电偶传感器基于‌塞贝克效应‌(Seebeck effect):两种不同
    锦正茂科技 2025-05-09 13:31 226浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 216浏览
  • 在过去的很长一段时间里,外卖市场呈现出美团和饿了么双寡头垄断的局面。美团凭借先发优势、强大的地推团队以及精细化的运营策略,在市场份额上长期占据领先地位。数据显示,截至2024年上半年,美团外卖以68.2%的市场份额领跑外卖行业,成为当之无愧的行业老大。其业务广泛覆盖,从一线城市的繁华商圈到二三线城市的大街小巷,几乎无处不在,为无数消费者提供便捷的外卖服务。饿了么作为阿里本地生活服务的重要一环,依托阿里强大的资金和技术支持,也在市场中站稳脚跟,以25.4%的份额位居第二。尽管市场份额上与美团有一定
    用户1742991715177 2025-05-06 19:43 106浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 624浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 541浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦