10问新能源汽车800V绝缘设计



从全球的技术动向来看,800V高压是电动汽车未来要走的必经之路。


但要知道,800V带来的不只是更快的充电效率和更长的续航里程,还有和400V系统相比,更严峻的绝缘和安全挑战。


今天我们就通过10个问答Q&A的形式,来探讨800V平台下新能源汽车的绝缘设计问题。


01

800V平台下,电机为Ⅰ型绝缘还是Ⅱ型绝缘?


在GB/T 20220.1(国际标准IEC 60034-18-41)关于电机是否为Ⅰ型绝缘还是Ⅱ型绝缘的描述:


Ⅰ型绕组绝缘预计其寿命期间不承受PD(局部放电)Ⅱ型绕组绝缘在寿命期间可以经受PD,额定电压700V以下的电机可能是Ⅰ型绝缘和Ⅱ型绝缘,额定电压为700V以上的电机通常为Ⅱ型绝缘。


GB/T 20220.2(国际标准IEC 60034-18-42)对比了Ⅰ型绝缘和Ⅱ型绝缘的区别:

  1. Ⅱ型绝缘的验证试验比Ⅰ型绝缘苛刻

  2. Ⅰ型绝缘可以没有耐晕结构,Ⅱ型绝缘设计需要增加耐晕结构

  3. 耐晕结构(云母带,半导体绝缘带绑扎还是很需要时间的)会导致定子制造工艺复杂,成本增加,不利于大批量生产。


下图为Ⅰ型绝缘还是Ⅱ型绝缘绕组的区别,上面为Ⅱ型绝缘绕组,为了防止电晕产生的放电,在漆包线外面绑扎上防电晕层,而下面的Ⅰ型绝缘则不需要(虽然Ⅰ型绝缘漆包线漆膜有防电晕涂层,但是这种耐电晕一般不超过200h,是为了考虑变频器过电压情况下导致的PD)



因此提高电机的PDIV,使其在800V平台下通过Ⅰ型绝缘测试才是新能源电机需要考虑的方向。




02

400V平台绝缘设计与800V平台有什么不同?


由于母线电压上升,电机在绝缘设计上区别于400V的点在于几个参数:PDIV、电气间隙与爬电距离。


其中PDIV主要是涉及到漆包线选型,电气间隙与爬电距离涉及到电机绝缘结构的设计(基本上电气间隙和爬电距离增加一倍)


对于扁线电机,因为其绕组末端需要焊接,因此扁线电机端部会存在裸铜,400V平台电机可以通过充足的电气间隙去规避放电;


800V需要电气间隙太大,一般是通过涂敷,利用环氧粉末去增强端部绝缘


400V平台

800V平台




03

如何确立电气间隙与爬电距离?


IEC 60664-1有具体怎么去确定电气间隙与爬电距离,一般而言新能源电机电压属于低压,不考虑加强绝缘。


下面列一下爬电距离与电气间隙需要考核的参数:

  • 电气间隙:瞬态过电压、再现峰值电压、污染等级、海拔、环境;

  • 爬电距离:电机工作电压、CTI、污染等级、环境


这里需要说明关于海拔因素,海拔会影响大气压,而大气压对空气中的放电存在影响,因此在考虑PDIV时候也需要将海拔因素考虑进去。




04

污染物等级参数怎么选择?


对于电机,污染物等级一般取等级3;对于电控,一般取等级2。造成差异的两个原因是制造环境工作特点


电控制造环境一般是无尘电子环境,电机制造车间往往达不到无尘环境(即使油冷电机可能达到无尘,但是考虑到ATF油的存在的颗粒往往会对电机造成污染)


电机部件存在油脂物(轴承、浸渍漆),在电机工作当中可能会因为热或者相对运动有少量挥发。


因此一般考虑污染物等级,电控一般是2级,电机是3级,下面是污染等级的定义:




05

漆包线PDIV的选择?


对于800V平台,漆包线的选型与400V平台截然不同,不同点在于漆膜厚度与漆膜材料。


上文讲到新能源的驱动电机定义为Ⅰ型绝缘,理论上那么就不允许存在PD,也就是电机的PDIV要高于电机实际承受的电压


PDIV通常是一定值,它的测量具有较好的重复性,主要取决于试样的绝缘厚度和介电常数。相同材料时绝缘厚度越大的试样,PDIV越高。


如下图,逆变器PWM控制输出的电压存在尖峰,要远远高于母线电压(工作电压),具体多少要看逆变器的能力,一般而言定义为母线电压的1.3~1.8倍



除此之外,根据标准IEC 60034-18-41中,考虑到热老化影响,需要加上经验系数1.3(当然如果有更多实测数据最好,比如漆包线20℃~180℃的PDIV衰减,老化后的衰减)


另外,还需要考虑高海拔情况下放电,根据文献《海拔对局部放电特性的影响》,放电起始电压与气压呈直线关系,随气压降低而降低。


因此考虑到海拔因素,需要再加上安全余量1.5(根据测试地点不同修正该参数)


因此这样计算下来,选取的漆包线的PDIV=2300V左右的水平(一般1500V以上的漆包线就属于高PDIV),这个水平的漆包线相对比较保险。



06

为什么800V要考虑耐电晕需求?


之前说Ⅰ型绝缘是在生命周期不产生局部放电,按理是不需要特别考察耐电晕的,那为什么400V不需要考察耐电晕,800V还要特别强调耐电晕?


解答这个问题前,要谈谈逆变器输出波形。可以看到逆变器输出的尖峰电压其实并不一致,也就是在于尖峰系数无法做到统一,对于400V电机,大可做到采用保守的尖峰系数;


逆变器输出波形


但对于800V电机,如果采用保守的尖峰系数,那么所选用的漆包线的PDIV远远高于2300V,这样基本上就没有了选择型,况且高PDIV漆包线漆膜较厚,如果是扁线电机,会导致制造工艺困难。


因此选择一个合适的尖峰系数(大多数尖峰达到的值),采用兼顾PDIV和耐电晕性能漆包线是很不错的一个选择。




07

耐电晕漆包线与普通线有什么区别?


主要区别在于漆膜,如下图,一般普通漆包线漆膜存在一层漆膜,成分为聚酰亚胺PI、聚酰胺酰亚胺PAI。


而耐电晕的漆包线会再刷一层耐电晕涂层提高其耐电晕效果。通过加以此耐电晕涂层,耐电晕漆包线耐电晕能达到100h(普通漆包线一般20-30小时),虽然比不上云母带漆包线(Ⅱ型绝缘电机),但是在800V环境下使用还是比较不错的。


普通漆包线与耐电晕漆包线区别




08

绝缘电阻测试


直流电压施加于电介质,经过一定时间极化过程结束后,流过电介质的泄漏电流对应的电阻称为绝缘电阻。


绝缘电阻的测试示意图如下所示,主要测试相间绝缘电阻、相对地绝缘电阻、相对NTC绝缘电阻



测试电压:500Vdc(根据电机额定电压)

持续时间:5s

判定标准:一般分为冷态绝缘电阻和热态绝缘电阻,如果按照GB/T18488,冷态绝缘电阻需要大于20MΩ



额定电压 V

≤36

36-500

500-3300

绝缘电阻仪规格 V

250

500

1000

测试电压与电机额定电压关系


这里简单讲解下为什么用直流电,如下图,绝缘电阻是绝缘电压除以总电流,交流电对电容电流影响较大(频率),直流电机会没什么影响。



当然电机绝缘电阻也会用吸收比或极化指数表达。吸收比为试验电压施加60s时的测量值与施加15s时的测量值的比值。


PS:这一项测试我发现没有新能源电机厂商关注,我也不知道原因,有能够解释的可以私信留言。




09

工频耐电压测试


工频耐电压是国家的标准,试验电压的频率是50Hz。



测试电压:1000+2Umax(电池包最大工作电压),50Hz

持续时间:1min

判定标准:漏电流符合标准。



什么样的漏电流叫做符合标准?这个和测试电压密切相关,正确做法需要大量耐电压数据,通过统计来判断,但是目前做新能源电机都知道,周期比较短,大多数拍着脑袋出来的。




10

匝间耐压测试


匝间耐压测试目的是评价匝间绝缘耐过电压的冲击能力和检验匝间绝缘中的薄弱点,用冲击波形其测试原理图如下:


匝间耐压测试示意图

测试电压:1.7*工频耐电压值


上述原理为使用一个高压窄脉冲施加于被测绕组的两端,此脉冲能量在绕组与匹配电容之间产生一个并联自激振荡,由于绕组直流电阻的存在, 此谐振为一种衰减振荡波并较快趋近于零。


分析被测绕组振荡波形与标准绕组振荡波形之差异,即可判断被测绕组是否存在匝间短路或匝间绝缘不良的问题,如下图为匝间耐电压波形典型示意图。


匝间耐电压波形典型示意图

a) 标准波形   b) 有较小差异波形

c) 有较大差异波形 d) 有匝间短路放电波形

e) 两相都存在匝间短路或铁芯接地不良


以上是新能源电机尤其是800V绝缘测试的相关内容,仅为作者个人在实际工作过程中遇到的问题及简要思路,如有失误也欢迎后台私信指正,不胜感谢。


文章首尾冠名广告正式招商,功率器件:IGBT,MOS,SiC,GaN,磁性器件,电源芯片,DSP,MCU,新能源厂家都可合作,有意者加微信号1768359031详谈。

说明:本文来源网络;文中观点仅供分享交流,不代表本公众号立场,转载请注明出处,如涉及版权等问题,请您告知,我们将及时处理。

电力电子技术与新能源通讯录:


重点

如何下载《新能源汽车板块内高清PDF电子书


点击文章底部阅读原文,访问电力电子技术与新能源论坛(www.21micro-grid.com)下载!


或者转发所要文章到朋友圈不分组不屏蔽,然后截图发给小编(微信1413043922),小编审核后将文章发你!


推荐阅读:点击标题阅读

LLC_Calculator__Vector_Method_as_an_Application_of_the_Design

自己总结的电源板Layout的一些注意点

High_Frequency_Transformers_for_HighPower_Converters_Materials

华为电磁兼容性结构设计规范V2.0

Communication-less Coordinative Control of Paralleled Inverters

Soft Switching for SiC MOSFET Three-phase Power Conversion

Designing Compensators for Control of Switching Power Supplies

100KHZ 10KW Interleaved Boost Converter with full SiC MOSFET

华为-单板热设计培训教材


看完有收获?请分享给更多人


公告:

电力电子技术与新能源微信群,欢迎加小编微信号:(QQ号)1413043922,请注明研究方向或从事行业(比如光伏逆变器硬件),小编对电力电子技术与新能源及微电网的市场发展很看好,对其关键技术很感兴趣,如有技术问题,欢迎加小编微信,共同讨论。

欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 892913659

在这里有电力电子技术:光伏并网逆变器(PV建模,MPPT,并网控制,LCL滤波,孤岛效应),光伏离网,光伏储能,风电变流器(双馈、直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC(LLC,移相全桥,DAB),储能(锂电池、超级电容),低电压穿越(LVRT),高电压穿越,虚拟同步发电机,多智能体,电解水,燃料电池,能量管理系统(直流微网、交流微网)以及APF,SVG ,DVR,UPQC等谐波治理和无功补偿装置等。
PSCAD/MATLABsimulink/Saber/PSPICE/PSIM——软件仿真+DSP+(TI)TMS320F2812,F28335,F28377,(Microchip)dsPIC30F3011,FPGA,ARM,STM32F334——硬件实物。
欢迎技术人员加入,多多交流,共同进步!


更多精彩点下方阅读原文

      点亮在看,小编工资涨1毛!

电力电子技术与新能源 电力电子技术,交直流微电网,光伏并网逆变器,储能逆变器,风电变流器(双馈,直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC,锂电池,超级电容,燃料电池,能量管理系统以及APF,SVG ,UPQC等
评论
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 444浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 153浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 115浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 186浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 46浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 122浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 102浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 55浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦