一文详解用eBPF观测HTTP

Linux阅码场 2022-08-11 08:00


前言


随着eBPF推出,由于具有高性能、高扩展、安全性等优势,目前已经在网络、安全、可观察等领域广泛应用,同时也诞生了许多优秀的开源项目,如CiliumPixie等,而iLogtail 作为阿里内外千万实例可观测数据的采集器,eBPF 网络可观测特性也预计会在未来8月发布。下文主要基于eBPF观测HTTP 1、HTTP 1.1以及HTTP2的角度介绍eBPF的针对可观测场景的应用,同时回顾HTTP 协议自身的发展。

eBPF基本介绍


eBPF 是近几年 Linux Networkworking 方面比较火的技术之一,目前在安全、网络以及可观察性方面应用广泛,比如CNCF 项目Cilium 完全是基于eBPF 技术实现,解决了传统Kube-proxy在大集群规模下iptables 性能急剧下降的问题。从基本功能上来说eBPF 提供了一种兼具性能与灵活性来自定义交互内核态与用户态的新方式,具体表现为eBPF 提供了友好的api,使得可以通过依赖libbpf、bcc等SDK,将自定义业务逻辑安全的嵌入内核态执行,同时通过BPF Map 机制(不需要多次拷贝)直接在内核态与用户态传递所需数据。
当聚焦在可观测性方面,我们可以将eBPF 类比为Javaagent进行介绍。Javaagent的基本功能是程序启动时对于已存在的字节码进行代理字节码织入,从而在无需业务修改代码的情况下,自动为用户程序加入hook点,比如在某函数进入和返回时添加hook点可以计算此函数的耗时。而eBPF 类似,提供了一系列内核态执行的切入点函数,无需修改代码,即可观测应用的内部状态,以下为常用于可观测性的切入点类型:
  • kprobe:动态附加到内核调用点函数,比如在内核exec系统调用前检查参数,可以BPF 程序设置 SEC("kprobe/sys_exec")头部进行切入。
  • tracepoints:内核已经提供好的一些切入点,可以理解为静态的kprobe,比如syscall 的connect函数。
  • uprobe:与krobe对应,动态附加到用户态调用函数的切入点称为uprobe,相比如kprobe 内核函数的稳定性,uprobe 的函数由开发者定义,当开发者修改函数签名时,uprobe BPF 程序同样需要修改函数切入点签名。
  • perf_events:将BPF 代码附加到Perf事件上,可以依据此进行性能分析。


TCP与eBPF


由于本文观测协议HTTP 1、HTTP1.1以及HTTP2 都是基于TCP 模型,所以先回顾一下 TCP 建立连接的过程。首先Client 端通过3次握手建立通信,从TCP协议上来说,连接代表着状态信息,比如包含seq、ack、窗口/buffer等,而tcp握手就是协商出来这些初始值;而从操作系统的角度来说,建立连接后,TCP 创建了INET域的 socket,同时也占用了FD 资源。对于四次挥手,从TCP协议上来说,可以理解为释放终止信号,释放所维持的状态;而从操作系统的角度来说,四次挥手后也意味着Socket FD 资源的回收。
而对于应用层的角度来说,还有一个常用的概念,这就是长连接,但长连接对于TCP传输层来说,只是使用方式的区别:
  • 应用层短连接:三次握手+单次传输数据+四次挥手,代表协议HTTP 1
  • 应用层长连接:三次握手+多次传输数据+四次挥手,代表协议 HTTP 1.1、HTTP2

参考下图TCP 建立连接过程内核函数的调用,对于eBPF 程序可以很容易的定义好tracepoints/kprobe 切入点。例如建立连接过程可以切入 accept 以及connect 函数,释放链接过程可以切入close过程,而传输数据可以切入read 或write函数。
基于TCP 大多数切入点已经被静态化为tracepoints,因此BPF 程序定义如下切入点来覆盖上述提到的TCP 核心函数(sys_enter 代表进入时切入,sys_exit 代表返回时切入)。
SEC("tracepoint/syscalls/sys_enter_connect") SEC("tracepoint/syscalls/sys_exit_connect") SEC("tracepoint/syscalls/sys_enter_accept") SEC("tracepoint/syscalls/sys_exit_accept") SEC("tracepoint/syscalls/sys_enter_accept4") SEC("tracepoint/syscalls/sys_exit_accept4") SEC("tracepoint/syscalls/sys_enter_close") SEC("tracepoint/syscalls/sys_exit_close") SEC("tracepoint/syscalls/sys_enter_write") SEC("tracepoint/syscalls/sys_exit_write") SEC("tracepoint/syscalls/sys_enter_read") SEC("tracepoint/syscalls/sys_exit_read") SEC("tracepoint/syscalls/sys_enter_sendmsg") SEC("tracepoint/syscalls/sys_exit_sendmsg") SEC("tracepoint/syscalls/sys_enter_recvmsg") SEC("tracepoint/syscalls/sys_exit_recvmsg") ....
结合上述概念,我们以iLogtail的eBPF 工作模型为例,介绍一个可观测领域的eBPF 程序是如何真正工作的。更多详细内容可以参考此分享: 基于eBPF的应用可观测技术实践。如下图所示,iLogtaileBPF 程序的工作空间分为Kernel Space与User Space。
Kernel Space 主要负责数据的抓取与预处理:
  • 抓取:Hook模块会依据KProbe定义拦截网络数据,虚线中为具体的KProbe 拦截的内核函数(使用上述描述的SEC进行定义),如connect、accept 以及write 等。
  • 预处理:预处理模块会根据用户态配置进行数据的拦截丢弃以及数据协议的推断,只有符合需求的数据才会传递给SendToUserSpace模块,而其他数据将会被丢弃。其后SendToUserSpace 模块通过eBPF Map 将过滤后的数据由内核态数据传输到用户态。 

User Space 的模块主要负责数据分析、聚合以及管理:
  • 分析:Process 模块会不断处理eBPF Map中存储的网络数据,首先由于Kernel 已经推断协议类型,Process 模块将根据此类型进行细粒度的协议分析,如分析MySQL 协议的SQL、分析HTTP 协议的状态码等。其次由于 Kernel 所传递的连接元数据信息只有Pid 与FD 等进程粒度元信息,而对于Kubernetes 可观测场景来说,Pod、Container 等资源定义更有意义,所以Correlate Meta 模块会为Process 处理后的数据绑定容器相关的元数据信息。
  • 聚合:当绑定元数据信息后,Aggreate 模块会对数据进行聚合操作以避免重复数据传输,比如聚合周期内某SQL 调用1000次,Aggreate 模块会将最终数据抽象为 XSQL:1000 的形式进行上传。
  • 管理:整个eBPF 程序交互着大量着进程与连接数据,因此eBPF 程序中对象的生命周期需要与机器实际状态相符,当进程或链接释放,相应的对象也需要释放,这也正对应着Connection Management 与Garbage Collection 的职责。


eBPF 数据解析


HTTP 1 、HTTP1.1以及HTTP2 数据协议都是基于TCP的,参考上文,一定有以下函数调用:
  1. connect 函数:函数签名为int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen), 从函数签名入参可以获取使用的socket 的fd,以及对端地址等信息。


  2. accept 函数:函数签名为int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen), 从函数签名入参同样可以获取使用的socket 的fd,以及对端地址等信息。


  3. sendmsg函数:函数签名为 ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags),从函数签名可以看出,基于此函数可以拿到发送的数据包,以及使用的socket 的fd信息,但无法直接基于入参知晓对端地址。


  4. recvmsg函数:函数签名为 ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags),从函数签名可以看出,基于此函数我们拿到接收的数据包,以及使用的socket 的fd信息,但无法直接基于入参知晓对端地址。


  5. close 函数:函数签名为 int close(int fd),从函数签名可以看出,基于此函数可以拿到即将关闭的fd信息。

HTTP 1 / HTTP 1.1 短连接模式

HTTP 于1996年推出,HTTP 1 在用户层是短连接模型,也就意味着每一次发送数据,都会伴随着connect、accept以及close 函数的调用,这就以为这eBPF程序可以很容易的寻找到connect 的起始点,将传输数据与地址进行绑定,进而构建服务的上下游调用关系。
可以看出HTTP 1 或者HTTP1.1 短连接模式是对于eBPF 是非常友好的协议,因为可以轻松的关联地址信息与数据信息,但回到HTTP 1/HTTP1.1 短连接模式 本身来说,‘友好的代价’不仅意味着带来每次TCP 连接与释放连接的消耗,如果两次传输数据的HTTP Header 头相同,Header 头也存在冗余传输问题,比如下列数据的头Host、Accept 等字段。

HTTP 1.1 长连接

HTTP 1.1 于HTTP 1.0 发布的一年后发布(1997年),提供了缓存处理、带宽优化、错误通知管理、host头处理以及长连接等特性。而长连接的引入也部分解决了上述HTTP1中每次发送数据都需要经过三次握手以及四次挥手的过程,提升了数据的发送效率。但对于使用eBPF 观察HTTP数据来说,也带来了新的问题,上文提到建立地址与数据的绑定依赖于在connect 时进行probe,通过connect 参数拿到数据地址,从而与后续的数据包绑定。但回到长连接情况,假如connect 于1小时之前建立,而此时才启动eBPF程序,所以我们只能探测到数据包函数的调用,如send或recv函数。此时应该如何建立地址与数据的关系呢?
首先可以回到探测函数的定义,可以发现此时虽然没有明确的地址信息,但是可以知道此TCP 报文使用的Socket 与FD 信息。因此可以使用 netlink 获取此Socket 的元信息,进行对长连接补充对端地址,进而在HTTP 1.1 长连接协议构建服务拓扑与分析数据明细。
ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags) ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags)

HTTP 2

在HTTP 1.1 发布后,由于冗余传输以及传输模型串行等问题,RPC 框架基本上都是进行了私有化协议定义,如Dubbo 等。而在2015年,HTTP2 的发布打破了以往对HTTP 协议的很多诟病,除解决在上述我们提到的Header 头冗余传输问题,还解决TCP连接数限制、传输效率、队头拥塞等问题,而 gRPC正式基于HTTP2 构建了高性能RPC 框架,也让HTTP 1 时代层出不穷的通信协议,也逐渐走向了归一时代,比如Dubbo3 全面兼容gRPC/HTTP2 协议。

特性

以下内容首先介绍一些HTTP2 与eBPF 可观察性相关的关键特性。

多路复用

HTTP 1 是一种同步、独占的协议,客户端发送消息,等待服务端响应后,才进行新的信息发送,这种模式浪费了TCP 全双工模式的特性。因此HTTP2 允许在单个连接上执行多个请求,每个请求相应使用不同的流,通过二进制分帧层,为每个帧分配一个专属的stream 标识符,而当接收方收到信息时,接收方可以将帧重组为完整消息,提升了数据的吞吐。此外可以看到由于Stream 的引入,Header 与Data 也进行了分离设计,每次传输数据Heaer 帧发送后为此后Data帧的统一头部,进一步提示了传输效率。

首部压缩

HTTP 首部用于发送与请求和响应相关的额外信息,HTTP2引入首部压缩概念,使用与正文压缩不同的技术,支持跨请求压缩首部,可以避免正文压缩使用算法的安全问题。HTTP2采用了基于查询表和Huffman编码的压缩方式,使用由预先定义的静态表和会话过程中创建的动态表,没有引用索引表的首部可以使用ASCII编码或者Huffman编码传输。
但随着性能的提升,也意味着越来越多的数据避免传输,这也同时意味着对eBPF 程序可感知的数据会更少,因此HTTP2协议的可观察性也带来了新的问题,以下我们使用gRPC不同模式以及Wireshark 分析HTTP2协议对eBPF 程序可观测性的挑战。

GRPC 

Simple RPC

Simple RPC 是GRPC 最简单的通信模式,请求和响应都是一条二进制消息,如果保持连接可以类比为HTTP 1.1 的长连接模式,每次发送收到响应,之后再继续发送数据。
但与HTTP 1 不同的是首部压缩的引入,如果维持长连接状态,后续发的数据包Header 信息将只存储索引值,而不是原始值,我们可以看到下图为Wirshark 抓取的数据包,首次发送是包含完整Header帧数据,而后续Heders 帧长度降低为15,减少了大量重复数据的传输。

Stream 模式

Stream 模式是gRPC 常用的模式,包含Server-side streaming RPC,Client-side streaming RPC,Bidirectional streaming RPC,从传输编码上来说与Simple RPC 模式没有不同,都分为Header 帧、Data帧等。但不同的在于Data 帧的数量,Simple RPC 一次发送或响应只包含一个Data帧 模式,而Stream 模式可以包含多个。
1、Server-side streaming RPC:与Simple RPC 模式不同,在Server-side streaming RPC 中,当从客户端接收到请求时,服务器会发回一系列响应。此响应消息序列在客户端发起的同一 HTTP 流中发送。如下图所示,服务器收到来自客户端的消息,并以帧消息的形式发送多个响应消息。最后,服务器通过发送带有呼叫状态详细信息的尾随元数据来结束流。

2、Client-side streaming RPC: 在客户端流式 RPC 模式中,客户端向服务器发送多条消息,而服务器只返回一条消息。
3、Bidirectional streaming RPC:客户端和服务器都向对方发送消息流。客户端通过发送标头帧来设置 HTTP 流。建立连接后,客户端和服务器都可以同时发送消息,而无需等待对方完成。

tracepoint/kprobe的挑战

从上述wirshark 报文以及协议模式可以看出,历史针对HTTP1时代使用的tracepoint/kprobe 会存在以下挑战:
  • Stream 模式: 比如在Server-side stream 下,假如tracepoint/kprobe 探测的点为Data帧,因Data 帧因为无法关联Header 帧,都将变成无效Data 帧,但对于gRPC 使用场景来说还好,一般RPC 发送数据和接受数据都很快,所以很快就会有新的Header 帧收到,但这时会遇到更大的挑战,长连接下的首部压缩。

  • 长连接+首部压缩:当HTTP2 保持长连接,connect 后的第一个Stream 传输的Header 会为完整数据,而后续Header帧如与前置Header帧存在相同Header 字段,则数据传输的为地址信息,而真正的数据信息会交给Server 或Client 端的应用层SDK 进行维护,而如下图eBPF tracepoints/kprobe 在stream 1 的尾部帧才进行probe,对于后续的Header2 帧大概率不会存在完整的Header 元数据,如下图Wireshark 截图,包含了很多Header 信息的Header 长度仅仅为15,可以看出eBPF tracepoints/kprobe 对于这种情况很难处理。
从上文可知,HTTP2 可以归属于有状态的协议,而Tracepoint/Kprobe 对有状态的协议数据很难处理完善,某些场景下只能做到退化处理,以下为使用Tracepoint/Kprobe 处理的基本流程。

Uprobe 可行吗?

从上述tracepoint/kprobe 的挑战可以看到,HTTP 2 是一种很难被观测的协议,在HTTP2 的协议规范上,为减少Header 的传输,client 端以及server 端都需要维护Header 的数据,下图是grpc 实现的HTTP2 客户端维护Header 元信息的截图,所以在应用层可以做到拿到完整Header数据,也就绕过来首部压缩问题,而针对应用层协议,eBPF 提供的探测手段是Uprobe(用户态),而Pixie 项目也正是基于Uprobe 实践了gRPC HTTP2 流量的探测,详细内容可以参考此文章[1]
下图展示了使用Uprobe 观测Go gRPC 流量的基本流程,如其中writeHeader 的函数定义为 func (l *loopyWriter) writeHeader(streamID uint32, endStream bool, hf []hpack.HeaderField, onWrite func()), 可以看到明确的Header 文本。

Kprobe 与Uprobe 对比

从上文可以看出Uprobe 实现简单,且不存在数据退化的问题,但Uprobe 真的完美吗?
  • 兼容性:上述方案仅仅是基于Golang gRPC 的 特定方法进行探测,也就意味着上述仅能覆盖Golang gRPC 流量的观察,对于Golang 其他HTTP2 库无法支持。
  • 多语言性:Uprobe 只能基于方法签名进行探测,更适用于C/GO 这种纯编译型语言,而对于Java 这种JVM 语言,因为运行时动态生成符号表,虽然可以依靠一些javaagent 将java 程序用于Uprobe,但是相对于纯编译型语言,用户使用成本或改造成本还是会更高一些。
  • 稳定性:Uprobe 相对于tracepoint/kprobe 来说是不稳定的,假如探测的函数函数签名有改变,这就意味着Uprobe 程序将无法工作,因为函数注册表的改变将使得Uprobe 无法找到切入点。

综合下来2种方案对比如下,可以看到2种方案对于HTTP2(有状态)的观测都存在部分取舍:
方式
稳定性
多语言性
兼容性
易于实现
数据完整性
Kprobe/tracepoint
复杂
存在数据退化
Uprobe
简单
完整


总结


上述我们回顾了HTTP1到HTTP2 时代的协议变迁,也看到HTTP2 提升传输效率做的种种努力,而正是HTTP2的巨大效率提升,也让gRPC选择了直接基于HTTP2 协议构建,而也是这种选择,让gRPC 成为了RPC 百家争鸣后是隐形事实协议。但我们也看到了协议的进步意味着更少的数据交互,也让数据可观察变得更加困难,比如HTTP2 使用eBPF目前尚无完美的解决方法,或使用Kprobe 观察,选择的多语言性、流量拓扑分析、但容许了失去流量细节的风险;或使用Uprobe 观察,选择了数据的细节,拓扑,但容许了多语言的兼容性问题。
iLogtail致力于打造覆盖Trace、Metrics 以及Logging 的可观测性的统一Agent,而eBPF 作为目前可观测领域的热门采集技术,提供了无侵入、安全、高效观测流量的能力,预计8月份,我们将在iLogtail Cpp正式开源后发布此部分功能,欢迎大家关注和互相交流。

参考

TCP 的几个状态:https://www.s0nnet.com/archives/tcp-status

HTTP2.0的总结:https://liyaoli.com/2015-04-18/HTTP-2.0.html

Transmission Control Protocol:https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Computer Networks:https://www.cse.iitk.ac.in/users/dheeraj/cs425/lec18.html

Hypertext_Transfer_Protocol:https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

gRPC: A Deep Dive into the Communication Pattern:https://thenewstack.io/grpc-a-deep-dive-into-the-communication-pattern/

ebpf2-http2-tracing:https://blog.px.dev/ebpf-http2-tracing/

深入理解Linux socket:https://www.modb.pro/db/153725

基于eBPF的应用可观测技术实践:https://www.bilibili.com/video/BV1Gg411d7tq

[1]:https://blog.px.dev/ebpf-http2-tracing/


Ftrace训练营火热报名中:Ftrace训练营:站在设计者的角度来理解ftrace(限50人)。训练营第一期报名已圆满成功,好评如潮。第二期课程正在进行中,第三期报名正在火爆进行中(咨询小月微信:linuxer2016)。


ARM安全架构训练营2期火热报名中:阅码场训练营:ARM安全架构之Trustzone-TEE实战报名咨询客服(小月微信:linuxer2016)。


ARM架构与调优调试训练营火热报名中:阅码场训练营:ARM架构与调试调优。报名咨询客服(小月微信:linuxer2016)。



Linux阅码场 专业的Linux技术社区和Linux操作系统学习平台,内容涉及Linux内核,Linux内存管理,Linux进程管理,Linux文件系统和IO,Linux性能调优,Linux设备驱动以及Linux虚拟化和云计算等各方各面.
评论
  •         霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子
    锦正茂科技 2024-12-10 11:07 64浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 84浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 70浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 69浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 73浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 105浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 78浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 44浏览
  •         在有电流流过的导线周围会感生出磁场,再用霍尔器件检测由电流感生的磁场,即可测出产生这个磁场的电流的量值。由此就可以构成霍尔电流、电压传感器。因为霍尔器件的输出电压与加在它上面的磁感应强度以及流过其中的工作电流的乘积成比例,是一个具有乘法器功能的器件,并且可与各种逻辑电路直接接口,还可以直接驱动各种性质的负载。因为霍尔器件的应用原理简单,信号处理方便,器件本身又具有一系列的du特优点,所以在变频器中也发挥了非常重要的作用。  &nb
    锦正茂科技 2024-12-10 12:57 76浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 45浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 101浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 136浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 66浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦