TEA5767调频接收模块

TsinghuaJoking 2020-04-19 00:00


在第15届全国大学生智能车竞赛中,有一道比赛项目组别是声音信标。在信标发送的导航信号中包括有声音、无线调频信号两种。在无线调频信号中包括有和发送的声音信号同步的调制信号。为了方便解调出该信号,可以使用集成的调频收音机模块来完成。 

在博文“单片调频收音机[4]”介绍了基于RDA5807集成调频收音机模块。并通过该模块来接受声音信号以及无线调频信号的强度信号。

TEA5767模块是同学在公众号留言询问的是否允许使用的调频收音模块,这也是允许使用的。

▲ 两款调频接收模组

这两款调频模块模组都可以在购买到体积为小封装表贴模组,相对来讲,RDA5807的价格低一些,外部电路非常简单。T RDA5807模块的外部接口定义可以参见博文“RDA5807 FM收音机模块[5]”,相关实验电路板参见博文“小型化RDA5807调频收音模块实验板”。

TEA5767模块的外部接口见下图所示:

▲ TEA5767 模组外部接口定义
▲ TEA5767 模组尺寸

模块简介

频率范围从76—108MHZ自动数字调谐。高灵敏度,高稳定性,低噪音,收音模块。一片低功耗电调谐调频立体声收音机电路,其内部集成了中频选频和解调网络,可以做到完全免调。

在本文实验中的电路板是已经集成了TEA5767调频专用模组的电路模块。其中集成了音频功放(TDA1308),3.5MM音频接口,可以直接接耳机、功放;天线接口,以及四针100mil的插针接口。因此无需再制作接口电路板,可以直接与单片机相连,完成测试。

▲ TEA5767收音机模块

模块的接口定义为:

序号 符号 功能
1 VCC 电源 +5V
2 SDA I2C总线的数据线
3 SCL I2C总线的时钟线
4 GND 电源地

天线可以选择:(根据自己喜好选择 配送的天线)天线可以选择 A (天线拉杆)型  或者  B(30CM导线)型(在 我们实际测试中,B(30CM导线)型 天线效果更好, 不推荐"拉杆型"个人感觉徒有外表。)

▲ 电路板配套的天线

该模块的详细资料下载地址为:https://pan.baidu.com/s/17_1JqM5q7qzktZ15Ppcx6g

实验电路板

由于模块需要使用I2C总线完成接收频率设置以及其他的功能。采用STC8G1K08-SOP8单片机作为模块I2C总结接口,同时该单片机通过UART与计算机相连,完成程序的ISP更新与测试数据的传送。

电路的功能包括:

  1. 通过I2C总线对TEA5867模块进行控制;
  2. 通过ADC读取外部分压电阻上的电压,确定在单独工作的情况下设置TEA5767 的三个频率点:85MHz,95MHz,110MHz。
  3. 通过UART串口与计算机相连。

实验电路板如下图所示:

▲ 电路板的原理图

通过快速制版,获得实验电路如下。通过100mil的排针可以方便与TEA5767模块在面包板上连接实验。

▲ 电路实验电路板

对于STC单片机的串口下载电路板,可以参见博文“STC单片机自动下载调试器设计[6]” 。

实验程序

1. TEA5767 设置协议

通过设置TEA5767中的锁相环(PLL)频率来选择调频接收频道。PLL的计算公式如下:

:PLL设置十进制参数,写入TEA5767内部寄存器的数值; :调频电台的频率数值,单位Hz。 :中频频率,在实验模块中,中频频率为225000Hz。 :参考频率,在实验模块中,该频率为32768。

2. I2C总线传输数据帧

TEA5767通过I2C总线来读取和写入IC中的控制寄存器,寄存器总共有五个字节,其中前面两个是用来设置PLL参数,其它的数据为功能控制。

设置频率子程序如下:


void TEA5767SetFrequency(float fFrequency) {
    unsigned int nFrequency;
    
    nFrequency = (unsigned int)((fFrequency * 1000000 + 225000) / 32768 * 4);
    g_ucTEA5767WriteData0[](unsigned char "0")(nFrequency >> 8);

    g_ucTEA5767WriteData1[](unsigned char "1")(nFrequency & 0xff);

    g_ucTEA5767WriteData[2] = 0xb0;
    g_ucTEA5767WriteData[3] = 0x10;
    g_ucTEA5767WriteData[4] = 0x0;
    
    TEA5767WriteByte(g_ucTEA5767WriteData);    
}

其中函数TEA5767WriteByte是将5个字节的数据连续写入TEA5767内部。

在读取TEA5767内部的5个寄存器数值中,在第4个字节的高四位反映了模块接收到的信号的强度。下面函数反映读取TEA5767信号RSSI的过程。

unsigned char TEA5767ReadRSSI(void) {
    TEA5767ReadByte(g_ucTEA5767ReadData);
    return g_ucTEA5767ReadData[3] >> 4;
}

芯片内部的RSSI数值只有四位,与输入RF强度之间的关系如下图所示。

▲ RF强度与芯片强度数值之间的关系

对照RDA5807模块,其内部的RSSI数值为6bit,相对所获得的精度数值比TEA5767要高,具体可以参见博文“利用 RDA5807的RSSI测量RF强度[7]”。

测试结果

1. 实验系统

使用面包板将单片机测试版与TEA5767模块连接起来如下图所示。工作电压为5V。

▲ 实验电路板

2. 读取TEA5767信号强度数值

通过软件设置TEA5767接收频率,频率范围从85.0MHz到108.0MHz,每隔0.1MHz修改频率。读取信号强度数值反映了当地调频广播的分布情况。如下图所示:

▲ 读取TEA5767无线信号强度数值

读取的实验数据如下:

fdim=[85.00,85.10,85.20,85.30,85.40,85.50,85.60,85.70,85.80,85.90,86.00,86.10,86.20,86.30,86.40,86.50,86.60,86.70,86.80,86.90,87.00,87.10,87.20,87.30,87.40,87.50,87.60,87.70,87.80,87.90,88.00,88.10,88.20,88.30,88.40,88.50,88.60,88.70,88.80,88.90,89.00,89.10,89.20,89.30,89.40,89.50,89.60,89.70,89.80,89.90,90.00,90.10,90.20,90.30,90.40,90.50,90.60,90.70,90.80,90.90,91.00,91.10,91.20,91.30,91.40,91.50,91.60,91.70,91.80,91.90,92.00,92.10,92.20,92.30,92.40,92.50,92.60,92.70,92.80,92.90,93.00,93.10,93.20,93.30,93.40,93.50,93.60,93.70,93.80,93.90,94.00,94.10,94.20,94.30,94.40,94.50,94.60,94.70,94.80,94.90,95.00,95.10,95.20,95.30,95.40,95.50,95.60,95.70,95.80,95.90,96.00,96.10,96.20,96.30,96.40,96.50,96.60,96.70,96.80,96.90,97.00,97.10,97.20,97.30,97.40,97.50,97.60,97.70,97.80,97.90,98.00,98.10,98.20,98.30,98.40,98.50,98.60,98.70,98.80,98.90,99.00,99.10,99.20,99.30,99.40,99.50,99.60,99.70,99.80,99.90,100.00,100.10,100.20,100.30,100.40,100.50,100.60,100.70,100.80,100.90,101.00,101.10,101.20,101.30,101.40,101.50,101.60,101.70,101.80,101.90,102.00,102.10,102.20,102.30,102.40,102.50,102.60,102.70,102.80,102.90,103.00,103.10,103.20,103.30,103.40,103.50,103.60,103.70,103.80,103.90,104.00,104.10,104.20,104.30,104.40,104.50,104.60,104.70,104.80,104.90,105.00,105.10,105.20,105.30,105.40,105.50,105.60,105.70,105.80,105.90,106.00,106.10,106.20,106.30,106.40,106.50,106.60,106.70,106.80,106.90,107.00,107.10,107.20,107.30,107.40,107.50,107.60,107.70,107.80,107.90]
leveldim=[4.00,5.00,6.00,5.00,5.00,5.00,5.00,5.00,5.00,6.00,11.00,8.00,6.00,5.00,5.00,6.00,6.00,5.00,4.00,6.00,5.00,5.00,5.00,5.00,5.00,6.00,12.00,6.00,6.00,5.00,5.00,5.00,5.00,8.00,7.00,5.00,6.00,9.00,6.00,6.00,5.00,5.00,5.00,5.00,5.00,5.00,4.00,4.00,4.00,5.00,9.00,5.00,5.00,5.00,5.00,6.00,6.00,5.00,4.00,5.00,9.00,5.00,5.00,5.00,6.00,8.00,6.00,5.00,4.00,4.00,6.00,6.00,6.00,8.00,7.00,6.00,5.00,4.00,5.00,5.00,6.00,6.00,5.00,5.00,5.00,6.00,5.00,5.00,6.00,5.00,6.00,6.00,7.00,6.00,8.00,12.00,14.00,13.00,11.00,7.00,6.00,6.00,5.00,8.00,10.00,8.00,5.00,4.00,6.00,6.00,9.00,12.00,8.00,8.00,5.00,8.00,11.00,8.00,6.00,5.00,6.00,6.00,5.00,7.00,12.00,5.00,6.00,7.00,6.00,7.00,6.00,8.00,10.00,9.00,6.00,6.00,5.00,7.00,7.00,6.00,6.00,6.00,6.00,7.00,6.00,7.00,11.00,7.00,6.00,6.00,10.00,7.00,6.00,6.00,6.00,9.00,13.00,10.00,6.00,6.00,6.00,5.00,6.00,5.00,6.00,5.00,5.00,6.00,7.00,7.00,6.00,7.00,7.00,6.00,11.00,12.00,9.00,6.00,7.00,6.00,6.00,7.00,6.00,6.00,6.00,5.00,6.00,6.00,6.00,11.00,9.00,5.00,5.00,6.00,6.00,6.00,5.00,7.00,6.00,6.00,7.00,6.00,5.00,6.00,7.00,7.00,6.00,6.00,7.00,7.00,6.00,10.00,7.00,7.00,7.00,7.00,8.00,7.00,7.00,7.00,6.00,5.00,10.00,13.00,11.00,8.00,6.00,7.00,7.00,7.00]

3.接收到Chirp信号波形

在实验中,信号板发送的调频频率为95MHz,设置TEA5767接收频率为95MHz,在模块的音频输出便可以观察到有信号板发送的Chirp信号。

▲ 通过示波器接观察接收到的的Chirp信号

下图是将接收到的Chirp信号展开之后对应的波形。该信号耦合到单片机AD转换器输入端,便可以用于和麦克风信号进行相关计算,获得声源延迟信息。

▲ 接收到的Chirp信号

结论

TEA5767本身还有很多其它的辅助功能,比如可以自动搜索调频电台,软件静音控制等。在智能车竞赛中,只是应用了它的调频接收的功能。

TEA5767的信号强度分辨率只有4bit,分辨率比较低。使用该信号来判断距离信标的远近误差太大。相比较而言,RDA5807接收模块的分辨精度则会很高。但是RDA5807的RSSI的信号强度具有很低的带宽,对于信号强度变化有比较大的滞后。

参考资料

[1]

信标的信号: https://zhuoqing.blog.csdn.net/article/details/105575349

[2]

声音信标长啥样子?: https://zhuoqing.blog.csdn.net/article/details/105207528

[3]

声音信标调试: https://zhuoqing.blog.csdn.net/article/details/105004283

[4]

单片调频收音机: https://zhuoqing.blog.csdn.net/article/details/104131905

[5]

RDA5807 FM收音机模块: https://blog.csdn.net/zhuoqingjoking97298/article/details/104116006?depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromBaidu-3&utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromBaidu-3

[6]

STC单片机自动下载调试器设计: https://zhuoqing.blog.csdn.net/article/details/105543574

[7]

利用 RDA5807的RSSI测量RF强度: https://zhuoqing.blog.csdn.net/article/details/104122851

TsinghuaJoking 这是一个公众号,它不端、不装,与你同游在课下、课上。 卓晴博士,清华大学中央主楼 626A。010-62773349, 13501115467,zhuoqing@tsinghua.edu.cn
评论 (0)
  • 置信区间反映的是“样本均值”这个统计量的不确定性,因此使用的是标准误(standard error),而不是直接用样本标准差(standard deviation)。标准误体现的是均值的波动程度,而样本标准差体现的是个体数据的波动程度,两者并非一回事,就如下图所显示的一样。下面优思学院会一步一步解释清楚:一、标准差和标准误,究竟差在哪?很多同学对“标准差”和“标准误”这两个概念傻傻分不清楚,但其实差别明显:标准差(Standard Deviation,σ或s):是衡量单个数据点相对于平均值波动的
    优思学院 2025-04-17 13:59 23浏览
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 53浏览
  • 自动驾驶技术的飞速发展,正在重新定义未来出行的边界。从感知到决策,从规划到控制,每一个环节都离不开海量、精准的高质量数据支撑。然而,随着传感器数量的增加和数据规模的指数级增长,行业正面临一系列挑战:多源传感器数据的时间同步难题、复杂数据格式的适配、测量技术的灵活性不足、设备集成周期冗长等,这些问题正成为自动驾驶研发与测试的“隐形瓶颈”。基于技术积累与行业洞察,本文分享一套创新的ADAS时空融合数据采集方案。通过硬件与软件的深度协同优化,能够很好地解决数据采集中的核心痛点,还为自动驾驶研发提供了高
    康谋 2025-04-17 09:54 34浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 87浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 32浏览
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 42浏览
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 50浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 50浏览
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 44浏览
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 32浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 85浏览
  • 【摘要/前言】4月春日花正好,Electronica就在浪漫春日里,盛大启幕。2025年4月15-17日,慕尼黑上海电子展于上海新国际博览中心成功举办。伴随着AI、新能源汽车、半导体的热潮,今年的Electronica盛况空前。请跟随Samtec的视角,感受精彩时刻!【 Samtec展台:老虎的朋友圈技术派对】借天时、占地利、聚人和,Samtec 展台人气爆棚!每年展会与大家相聚,总能收获温暖与动力~Samtec展台位于W3展馆716展位,新老朋友相聚于此,俨然一场线下技术派对!前沿D
    电子资讯报 2025-04-17 11:38 33浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 117浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦