红外单帧弱小目标检测算法研究综述

MEMS 2022-08-05 00:00

作为红外预警探测领域的关键技术,适应于不同复杂场景下的红外弱小目标检测算法一直受到国内外研究人员的广泛关注。随着红外预警探测技术的发展以及军事化作战需求的提高,满足低虚警、高检测精度的红外弱小目标检测算法一直是国内外研究重点。


红外弱小目标检测算法主要分为多帧检测和单帧检测,多帧检测利用多帧图像中运动目标的连续性和相关性实现红外小目标检测,而单帧检测主要利用单帧图像,提取小目标在红外图像中的梯度、灰度、对比度等特征,通过目标增强或背景抑制等方式实现弱小目标检测,相比多帧检测,具有复杂度低,执行效率高,便于硬件实现等优点。


据麦姆斯咨询报道,近期,华北光电技术研究所刘征等人在《激光与红外》期刊上发表了以“红外单帧弱小目标检测算法研究综述”为主题的综述文章。


这项研究首先从成像特点、数学模型构建以及背景杂波干扰等方面阐述了弱小目标的特征与检测难点。然后分类介绍了近些年来提出的单帧弱小目标检测算法,并对算法的优势和不足进行了分析。最后结合当前红外预警探测领域的实际应用需求,分析了红外弱小目标检测算法未来的发展趋势。


红外弱小目标这一定义分别指出了目标的两个特性,即“弱”和“小”,其中“弱”指的是目标信噪比低、与背景之间的对比度差、红外辐射强度弱;而“小”指的是目标像素少,检测时难以获得纹理信息,可考虑的信息只有灰度和位置。


红外小目标图像与对应区域的三维强度分布图


红外单帧弱小目标检测算法主要通过图像预处理突出小目标同时抑制背景噪声干扰,之后采用阈值分割提取疑似目标,最后根据特征信息进行目标确认。由于单帧检测的算法复杂度较低,检测效率高,因此目前绝大多数的高速运动目标检测平台等都是采用的单帧红外弱小目标检测算法。


红外单帧弱小目标检测算法包括:①基于滤波的检测算法;②基于人类视觉系统的检测算法;③基于图像数据结构的检测算法;④基于深度学习的智能检测算法。


基于滤波的检测算法,由于红外探测系统得到的单帧图像中,红外小目标的纹理、大小等特征信息往往难以获取,通常红外小目标检测是基于小目标和背景之间的灰度差异。滤波方法的原理就是利用像素灰度差异来突出小目标,并去除周围背景噪声干扰。目前这类方法大体可分为空间域滤波和变换域滤波。空间域滤波的方法主要有:空域高通滤波、最大中值和最大均值滤波、Robinson Guard滤波器、双边滤波算法、数学形态学方法和二维最小均方滤波器(TDLMS)。变换域滤波应用较多的这类方法主要有频域高通滤波、小波变换滤波、多尺度几何分析、二维经验模式分解(BEMD)以及离散余弦变换(DCT)。


基于人类视觉系统(HVS)的检测算法,人眼可以快速定位到感兴趣区域,并获取其中的感兴趣目标,这一行为主要是人眼根据对比度区别目标和背景而不是亮度,以此来获取视觉显著性区域。根据HVS的特性,红外图像中目标的显著性特征主要包含对比度、大小、形状等等。所以红外小目标检测中引入了局部对比度、视觉显著性图、多特征融合、多尺度等理论机制。


基于图像数据结构的检测算法,将图像数据结构引入到红外小目标检测算法中,利用了红外图像中背景的非局部自相似性和目标的稀疏特性,即背景块属于同一低秩子空间,而目标相对整体图像尺寸较小。目前比较典型的基于图像数据结构的方法主要有红外图像块(IPI)模型和稳健主成分分析(RPCA)。


基于深度学习的智能检测算法,能通过训练提取数据中深层次的中层以及高层特征,用以目标表征,提升目标检测的鲁棒性。目前将深度学习应用于红外小目标检测最大的局限性在于,待检测的红外小目标尺寸过小,缺乏纹理、结构等特征,而神经网络中往往采取下采样操作,导致目标在特征图上尺寸仅占据几个像素,使得检测器难以提取出有效特征,导致小目标检测效果差;同时考虑到实际红外工程应用中对算法的实时性和硬件负载能力均有限定,神经网络架构移植到常用的FPGA DSP硬件架构上的难度较大。


结合当下红外预警探测系统的发展需求以及各个领域逐渐引入人工智能思想的热潮,可以预见未来红外弱小目标检测的发展趋势如下:


1)首先,考虑到红外预警探测对探测距离、成像质量、复杂背景环境下的适应能力等需求的提高,在硬件上研制大规模、高分辨率、多波段、超高密度集成和轻型化的焦平面器件,仍然是推动红外弱小目标检测研究必不可少的一部分。


2)其次,由于单一波段的红外探测系统的性能总是有限的,由单波段检测推广到研究红外多光谱融合探测技术,高光谱探测技术以及多传感器信息融合技术,进行信息互补,实现预警系统一体化,有效解决单一波段或单一探测器探测性能的局限性。


3)最后,创新和改进现有的红外弱小目标检测算法仍然是目前研究的重点。利用深度学习模型架构进行红外弱小目标检测,完善红外弱小目标数据集,同步考虑神经网络模型架构硬件移植的可行性,后续研究可以利用FPGA高速并行计算、低功耗的优势,在FPGA上搭建神经网络架构,加速神经网络计算,保证算法的检测效率与实时性。



MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论 (0)
  •     前几天同事问我,电压到多少伏就不安全了?考虑到这位同事的非电专业背景,我做了最极端的答复——多少伏都不安全,非专业人员别摸带电的东西。    那么,是不是这么绝对呢?我查了一下标准,奇怪的知识增加了。    标准的名字值得玩味——《电流对人和家畜的效应》,GB/T 13870.5 (IEC 60749-5)。里面对人、牛、尸体分类讨论(搞硬件的牛马一时恍惚,不知道自己算哪种)。    触电是电流造成的生理效应
    电子知识打边炉 2025-04-09 22:35 206浏览
  • 背景近年来,随着国家对资源、能源有效利用率的要求越来越高,对环境保护和水处理的要求也越来越严格,因此有大量的固液分离问题需要解决。真空过滤器是是由负压形成真空过滤的固液分离机械。用过滤介质把容器分为上、下两层,利用负压,悬浮液加入上腔,在压力作用下通过过滤介质进入下腔成为滤液,悬浮液中的固体颗粒吸附在过滤介质表面形成滤饼,滤液穿过过滤介质经中心轴内部排出,达到固液分离的目的。目前市面上的过滤器多分为间歇操作和连续操作两种。间歇操作的真空过滤机可过滤各种浓度的悬浮液,连续操作的真空过滤机适于过滤含
    宏集科技 2025-04-10 13:45 86浏览
  • 技术原理:非扫描式全局像的革新Flash激光雷达是一种纯固态激光雷达技术,其核心原理是通过面阵激光瞬时覆盖探测区域,配合高灵敏度传感器实现全局三维成像。其工作流程可分解为以下关键环节:1. 激光发射:采用二维点阵光源(如VCSEL垂直腔面发射激光器),通过光扩散器在单次脉冲中发射覆盖整个视场的面阵激光,视场角通常可达120°×75°,部分激光雷达产品可以做到120°×90°的超大视场角。不同于传统机械扫描或MEMS微振镜方案,Flash方案无需任何移动部件,直接通过电信号控制激光发射模式。2.
    robolab 2025-04-10 15:30 109浏览
  •   卫星故障预警系统:守护卫星在轨安全的 “瞭望塔”   卫星故障预警系统作为保障卫星在轨安全运行的核心技术,集成多源数据监测、智能诊断算法与预警响应机制,实时监控卫星关键系统状态,精准预判故障。下面从系统架构、技术原理、应用场景以及发展趋势这四个关键维度展开深入解析。   应用案例   目前,已有多个卫星故障预警系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星故障预警系统。这些成功案例为卫星故障预警系统的推广和应用提供了有力支持。   系统架构与组成   卫星故障
    华盛恒辉l58ll334744 2025-04-09 17:18 136浏览
  •   海上电磁干扰训练系统:全方位解析      海上电磁干扰训练系统,作为模拟复杂海上电磁环境、锻炼人员应对电磁干扰能力的关键技术装备,在军事、科研以及民用等诸多领域广泛应用。接下来从系统构成、功能特点、技术原理及应用场景等方面展开详细解析。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   一、系统构成   核心组件   电磁信号模拟设备:负责生成各类复杂的电磁信号,模拟海上多样
    华盛恒辉l58ll334744 2025-04-10 16:45 132浏览
  • 政策驱动,AVAS成新能源车安全刚需随着全球碳中和目标的推进,新能源汽车产业迎来爆发式增长。据统计,2023年中国新能源汽车渗透率已突破35%,而欧盟法规明确要求2024年后新能效车型必须配备低速提示音系统(AVAS)。在此背景下,低速报警器作为车辆主动安全的核心组件,其技术性能直接关乎行人安全与法规合规性。基于WT2003H芯片开发的AVAS解决方案,以高可靠性、强定制化能力及智能场景适配特性,正成为行业技术升级的新标杆。WT2003H方案技术亮点解析全场景音效精准触发方案通过多传感器融合技术
    广州唯创电子 2025-04-10 08:53 207浏览
  • 由西门子(Siemens)生产的SIMATIC S7 PLC在SCADA 领域发挥着至关重要的作用。在众多行业中,SCADA 应用都需要与这些 PLC 进行通信。那么,有哪些高效可行的解决方案呢?宏集为您提供多种选择。传统方案:通过OPC服务器与西门子 PLC 间接通信SIMATIC S7系列的PLC是工业可编程控制器,能够实现对生产流程的实时SCADA监控,提供关于设备和流程状态的准确、最新数据。S7Comm(全称S7 Communication),也被称为工业以太网或Profinet,是西门
    宏集科技 2025-04-10 13:44 99浏览
  • 文/Leon编辑/侯煜‍关税大战一触即发,当地时间4月9日起,美国开始对中国进口商品征收总计104%的关税。对此,中国外交部回应道:中方绝不接受美方极限施压霸道霸凌,将继续采取坚决有力措施,维护自身正当权益。同时,中国对原产于美国的进口商品加征关税税率,由34%提高至84%。随后,美国总统特朗普在社交媒体宣布,对中国关税立刻提高至125%,并暂缓其他75个国家对等关税90天,在此期间适用于10%的税率。特朗普政府挑起关税大战的目的,实际上是寻求制造业回流至美国。据悉,特朗普政府此次宣布对全球18
    华尔街科技眼 2025-04-10 16:39 112浏览
  • ‌亥姆霍兹线圈‌是由两组相同的线圈组成,线圈之间的距离等于它们的半径。当电流同时流过这两个线圈时,会在它们中间形成一个几乎均匀的磁场。这种设计克服了普通线圈磁场不均匀的缺陷,能够在中心区域形成稳定、均匀的磁场‌。‌亥姆霍兹线圈的应用领域‌包括材料、电子、生物、医疗、航空航天、化学、应用物理等各个学科。由于其操作简便且能够提供极微弱的磁场直至数百高斯的磁场,亥姆霍兹线圈在各研究所、高等院校及企业中被广泛用于物质磁性或检测实验。‌亥姆霍兹线圈可以根据不同的标准进行分类‌:‌按磁场方向分类‌:‌一维亥
    锦正茂科技 2025-04-09 17:20 148浏览
  • 什么是车用高效能运算(Automotive HPC)?高温条件为何是潜在威胁?作为电动车内的关键核心组件,由于Automotive HPC(CPU)具备高频高效能运算电子组件、高速传输接口以及复杂运算处理、资源分配等诸多特性,再加上各种车辆的复杂应用情境等等条件,不难发见Automotive HPC对整个平台讯号传输实时处理、系统稳定度、耐久度、兼容性与安全性将造成多大的考验。而在各种汽车使用者情境之中,「高温条件」就是你我在日常生活中必然会面临到的一种潜在威胁。不论是长时间将车辆停放在室外的高
    百佳泰测试实验室 2025-04-10 15:09 81浏览
  •   天空卫星健康状况监测维护管理系统:全方位解析  在航天技术迅猛发展的当下,卫星在轨运行的安全与可靠至关重要。整合多种技术,实现对卫星的实时监测、故障诊断、健康评估以及维护决策,有力保障卫星长期稳定运转。  应用案例       系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。  一、系统架构与功能模块  数据采集层  数据处理层  智能分析层  决策支持层  二、关键技术  故障诊断技术  
    华盛恒辉l58ll334744 2025-04-10 15:46 91浏览
  • 行业变局:从机械仪表到智能交互终端的跃迁全球两轮电动车市场正经历从“功能机”向“智能机”的转型浪潮。数据显示,2024年智能电动车仪表盘渗透率已突破42%,而传统LED仪表因交互单一、扩展性差等问题,难以满足以下核心需求:适老化需求:35%中老年用户反映仪表信息辨识困难智能化缺口:78%用户期待仪表盘支持手机互联与语音交互成本敏感度:厂商需在15元以内BOM成本实现功能升级在此背景下,集成语音播报与蓝牙互联的WT2605C-32N芯片方案,以“极简设计+智能交互”重构仪表盘技术生态链。技术破局:
    广州唯创电子 2025-04-11 08:59 139浏览
  • 行业痛点:电动车智能化催生语音交互刚需随着全球短途出行市场爆发式增长,中国电动自行车保有量已突破3.5亿辆。新国标实施推动行业向智能化、安全化转型,传统蜂鸣器报警方式因音效单一、缺乏场景适配性等问题,难以满足用户对智能交互体验的需求。WT2003HX系列语音芯片,以高性能处理器架构与灵活开发平台,为两轮电动车提供从基础报警到智能交互的全栈语音解决方案。WT2003HX芯片技术优势深度解读1. 高品质硬件性能,重塑语音交互标准搭载32位RISC处理器,主频高达120MHz,确保复杂算法流畅运行支持
    广州唯创电子 2025-04-10 09:12 179浏览
  •   卫星故障预警系统软件:卫星在轨安全的智能护盾   北京华盛恒辉卫星故障预警系统软件,作为确保卫星在轨安全运行的关键利器,集成前沿的监测、诊断及预警技术,对卫星健康状况予以实时评估,提前预判潜在故障。下面将从核心功能、技术特性、应用场景以及发展走向等方面展开详尽阐述。   应用案例   目前,已有多个卫星故障预警系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星故障预警系统。这些成功案例为卫星故障预警系统的推广和应用提供了有力支持。   核心功能   实时状态监测:
    华盛恒辉l58ll334744 2025-04-09 19:49 165浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦