本文介绍如何使用LTspice®分析状态监控系统中振动数据的频谱,以便能够在工业机械电机故障的早期发出预警,同时介绍如何从Microsoft Excel® 电子表格中提取X、Y和Z平面数据,并将其转化为可以通过LTspice进行傅里叶变换的格式,以生成振动数据的谐波量图。
数字技术的进步没有丝毫放缓的迹象,已渗透到我们生活的方方面面,为机器提供智能并非奥威尔式的反乌托邦。由于自动化反馈环路有助于减少直接维护时间,因此可提高工厂自动化的效率。
工业4.0描述了将大数据的优势带入工厂车间的概念,装有传感器的机器可监控自身的性能并相互通信,从而共同分担整个工作载荷,同时向后台提供重要的诊断信息,而且无论在同一座建筑物里还是在不同的大陆都可以实现。
ADI主要致力于为工业物联网(IIOT)提供解决方案,即从传感器到云的各种稳定可靠的高性能信号链组件。在工业自动化中的一个应用领域就是状态监控(CbM),通过仔细校准机器的标称工作特性,然后使用本地传感器密切监控机器本身的状态。偏离标称信号的状态即表示机器需要维护。因此,配备状态监控系统的机器可根据实际需要进行维护,而不是相对随意地安排维修计划。
为了产生用于在LTspice中进行傅里叶分析的数据,将三个ADXL1002加速度计连接到电机,如图1所示,以测量侧向、垂向和纵向(分别为X、Y和Z)振动。
现在可检查此数据的谐波成分,以确定电机的运行状况。傅里叶分析是从波形中提取分量频谱的数学过程。纯正弦波的频谱中仅包含一个频率,称为基波频率。如果正弦波失真,将出现除基波频率之外的其他频率。通过分析电机振动模式的频谱,可精确地诊断其运行状况。由于能够执行傅里叶分析的硬件和软件通常价格很高,所以这里我们介绍一种可以对MEMS数据进行傅里叶分析的方法,基本上无需任何成本。
LTspice是一款功能强大、可免费使用的电路仿真器,它可以使用从状态监控系统的MEMS传感器中获取的振动数据,通过傅里叶分析绘制任何波形的频谱。通过图3所示的数据格式,LTspice能够生成傅里叶分析图,其中每个振动数据点都与其相应的时间戳配对。
在数据左侧插入一列——此列为每个数据值的时间戳。由于在一秒内提取了500,000个数据样本,每个数据点间隔2 µs。因此,在新列的第一个单元格中,输入 2E-6 代表2µs处的第一个时间戳。
此时出现图6所示的对话框,选中列(Columns)和线性(Linear)单选按钮。在步进值(Step value)中输入2E-6,在停止值(Stop value)中输入1。
总共应该有三个文本文件,其中包含状态监控系统中X、Y和Z轴的振动数据。
现在,可将此数据直接读入LTspice中。按照图11所示在LTspice中构建原理图。在该设计中,有六个电压源分别对应于故障和非故障的X,Y,Z轴的数据。这样就可以对新电机的振动数据执行傅里叶分析,并将分析结果与疑似故障电机数据的傅里叶分析进行比较。此方法的一大优势是新(非故障)电机的频率图可以叠加在疑似故障电机的频率图上,因此,性能差异一目了然。
去除了LTspice中的默认压缩设置,有时会产生更清晰的结果。如果忽略此行,仿真运行速度会更快,但产生的结果可能不太精确。
.tran 1
突出显示波形(Waveform)窗口,然后从菜单栏中选择查看(View) > FFTT。这将基于瞬态数据计算FFT。
从图2中的数据可以看到,在35000V这样如此高的失调电压上,我们通过数字只能看到很小的变化。在LTspice中进行仿真时,这些数据会转换成一个35,000 V的直流失调电压,并在此失调电压上还会叠加一个交流波形。
在傅里叶分析图中,此失调电压在频谱位置的直流点上表现为很大的一个尖刺,因此,当LTspice自动缩放Y轴时,相关谐波比例极小。右键单击X轴,指定高于直流电压的频率范围,由此可忽略直流失调电压——5 Hz至1 kHz应该足够。
可以清楚地看到电机的10 Hz旋转频率,以及60 Hz、142 Hz和172 Hz处存在明显的谐波。虽然本文不会分析电机内部的哪些组件导致了这些谐波,但毫无疑问,振动模式因电机磨损而改变。