一件非常重要的事

程序员cxuan 2022-08-02 17:20

原文链接:http://mindhacks.cn/2009/07/06/why-you-should-do-it-yourself/

作者:刘未鹏

我理解这个标题可能又有很多同学被认为是标题党了,我并不否决,但这是一篇非常有用的标题党文章。

我见过的程序员有很多,通过一个角度可以对他们进行分类:遇见问题先找人解决和遇见问题先自己动手寻求答案的。

遇到问题寻找捷径为什么是很聪明的做法

我们在生活中总是在不停地试图做最优经济决策,只不过很多时候我们为适应远古社会而进化的大脑未必适用于现代工业社会(《Mean Genes》,《进化心理学》,《How We Decide》),所以很多时候我们可以在超市为选择哪一卷卫生纸斟酌半天(《Predictably Irrational》),却在面对生活中重大抉择的时候轻易就随波逐流(《Paradox Of Choice》)。

我们的很多决策依赖于情绪系统的输出(从进化时间上比较“旧”的大脑部分)(《How We Decide》,《Synaptic Self》),这部分大脑属于典型的经过了漫长进化时间所雕琢过的,决策机制严重适应远古社会的模块(《Mean Genes》),比如在物质贫乏的远古时期,不管什么时候遇到富含热量的食物是必吃无误的,所以我们的情绪大脑只要闻到美食是绝对不去克制诱惑的,长出脂肪又如何?有的是饥寒交迫的时候去燃烧这些脂肪。然而这条规则到了现代这个物质充裕的社会却成了灾难(去查一下美国的肥胖比例?),可谓成也萧何败萧何。这样的例子在《Mean Genes》中还有不少。

我们在学习新东西,遇到困难的时候,为什么会放弃?因为我们下意识中会对所面临的困难以及成功后所得的收益作一个评估(经典的 cost/return 分析),这里特别重要的是对面临的困难的评估:我们都知道学习任何一门技能,一开始可能还兴趣浓厚,捋袖子上阵,过了一阵子便会遇到一个典型的分水岭,你会发现未知的东西比你想象得要多,困难重重,似乎一眼看过去没法确信什么时候才能掌握,甚至觉得有点 Mission Impossible,当觉知到的困难到一定程度之后,我们的大脑便会想:既然很大可能最终失败,甚至看不到成功的可能,为什么要白费力气去学一通呢?还不如省省呢。这是一个聪明的经济决策,去权衡性价比应该是每个经济个体的原则。然而,这个决策笨就笨在,它把困难评估得过高了,因此决策的前提就弄错了。为什么这么说呢?现代社会很多新东西是知识密集型的,而不像我们祖先生活的远古社会可能绝大部分是体力活。对体力活的评估我们很在行,大约能知道困难有多大,需要耗时多久,有没有可能完成。然而对学习新知识的困难程度的评估,我们却很不在行,因为大部分知识都是需要等你掌握了之才会“豁然开朗”、“柳暗花明的”,而在这之前你会觉得这东西太难了,完全没有头绪,摸不着门道,觉得山重水复疑无路,你会想“既然无路,就别去碰得满头是包了吧?何苦呢?”。

有一个很不错的概念叫做“Unknown Unknown”,大意是如果你不知道一个东西的话,你也不会知道你自己不知道它。很多时候新知识就有这个特性——掌握了之后觉得很明白,掌握之前却觉得“不可能啊”、“这简直没有解嘛”。在这样的认知之下,你自然会高估前方的困难、风险和不确定性,因为你不知道什么样的知识才能解决你的困惑。然而事实上呢?只要智商没有根本的差别,别人的大脑能够掌握的知识,你的大脑也能掌握,你所感觉到的巨大困难只不过是因为Unknown Unknown,你所需要的只是耐心地踏遍这块知识版图,当你掌握了那些你该掌握的知识之后自然会柳暗花明。

遇到问题寻找捷径为什么只是小聪明

我们在遇到困难的时候会试图去寻找捷径,心里的想法大概是:既然我自己解决可能需要耗费极大的精力,甚至连最终能否解决都无法判断,那么为什么要冒风险花费大量的时间去尝试呢?还不如想想其他法子。比如绕过问题,或者将问题外包给别人。

这很聪明,很经济:用最小的代价解决手头的问题。看上去是一个寻求经济上最优解的法子。

不过到底是局部最优还是全局最优呢?

“用最小的代价解决手头的问题”——这里的问题在于,难道我们计算收益的时候仅仅考虑是否解决了手头的问题吗?如果解决的过程中得到了其他的收益呢?

(图片注:荣耀属于indexed)

为了解决一个技术问题,你踏遍互联网,翻了若干教程、网站、书籍,最终解决了这个问题的同时还知道了以后遇到类似的问题该到哪儿最快最有效地找到参考,你还知道了哪些网站是寻找这个领域最有价值信息的地方,你还知道了哪些书是领域内最经典的书,说不定你在到处乱撞的过程中还会遇到其他若干意想不到的收益。

为了解决一个内存泄漏的 bug,你学习了一堆底层知识、了解了一堆调试工具、学习了若干 wikipedia 页面,表面上看来,仅仅为了解决这一个小 bug 你的时间花销未免太大了点,然而关键就在于,它的收益远远不止于解决了这一个小 bug,下次你遇到任何类似的 bug 的时候就能够哐当两下就解决之了。

生活或工作中,很大程度上你遇到的每个问题都不是孤立的,既然你遇到了某问题,那么很大的可能性你以后还会遇到类似的问题。当然,这个说法的另一面是,也有一些问题是一锤子买卖,即以后不会遇到类似的问题,因此只求速解决。不过按照我的经验这样的问题实在太少了,此外,你觉得你真的能够分辨你面对的问题是否属于这类问题吗?底线是,就算是这样的问题,你自己动手解决也能培养学习能力和思考能力。如果你判断它是一锤子问题,外包给别人解决,那么你就永远没机会发现这个问题背后蕴藏着哪些知识,这就成了一个自我实现的预言。

如果选择总是问别人的话,下次你还得继续问别人,每次直接问到问题的答案的同时意味着你永远都要靠别人的大脑来获得答案。

困难的路越走越容易,容易的路越走越难。

 往期推荐 

🔗

HTTP/3 ,它来了。

2w 字带你实战 ElasticSearch !

讲一篇通俗易懂的 C 函数。

6 分钟看完 BGP 协议。

《On Java》值得读吗?

万字长文爆肝路由协议!

程序员cxuan cxuan 写的文章还不错。会分享计算机底层、计算机网络、操作系统,Java基础、框架、源码等文章。
评论
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 136浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 78浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 44浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 105浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 45浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 84浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 66浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 73浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 70浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 69浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦