500kV断路器防跳试验方法优化

电气小青年 2022-07-24 19:38

断路器合闸回路一般都设计有防跳功能,防止断路器异常重复合闸。为保证防跳回路运行可靠,需要定期对防跳回路进行试验检查,常见的防跳试验方法都着重验证回路的正确性,忽视了验证防跳继电器动作时间是否满足要求的问题,容易导致误判。国能大渡河瀑布沟水力发电总厂的研究人员孙大根,在2022年第5期《电气技术》上撰文,介绍了一种新的试验方法,能够可靠检查防跳回路是否存在异常,为设备安全稳定运行提供保障。


500kV断路器是电力系统的关键设备,主要起到关合、承载和开断正常运行电流及短路电流的作用。如果断路器汇控柜或监控系统合闸命令触点粘连造成合闸回路一直带电,当设备出现故障导致开关跳闸时,合闸令会使断路器继续合闸,一般情况下故障电流可达到数倍额定电流,会对故障设备和断路器本身都造成极大损害,严重时甚至造成断路器爆炸,所以在断路器合闸回路中设计有防跳功能,可以防止断路器异常重复合闸。
为保证防跳回路运行可靠,需要结合断路器定检开展防跳功能验证工作。目前,一般的防跳试验方法是手动将合闸把手切至合闸位置保持不变(模拟合闸令触点粘连),然后通过在保护装置加故障量,使保护装置动作或直接在保护屏内短接跳闸令跳断路器,观察断路器是否继续合闸来判断防跳功能是否正常。
这种方法能够验证防跳回路是否正常,但是不易检查出防跳继电器动作时间不满足要求的情况,可能会出现误判防跳功能正常的情况。如果运行中断路器快速保护动作,会出现断路器分闸后防跳继电器触点仍未到位的情况,不能闭锁合闸功能,导致断路器继续合闸,影响设备安全稳定运行。

1  防跳回路介绍
某电站500kV断路器采用断路器本体的防跳功能,合闸回路及防跳回路接线如图1所示。正常情况下,断路器操作压力及SF6气体压力正常,无闭锁信号,断路器收到合闸令后,合闸令1SHJ、防跳继电器触点52YA、分闸位置52b/1、操作压力闭锁触点GLX、SF6气体压力闭锁触点HL均闭合,合闸线圈励磁,断路器正常合闸;合闸到位后,断路器合闸位置触头52a/1闭合,防跳继电器52YA励磁并自保持,将合闸回路中的52YA1(常闭)触点断开,此时即使合闸令粘连,断路器因故障跳开后也无法继续合闸,起到防跳的作用。

图1  断路器合闸及防跳回路接线
为检查防跳回路工作情况,按照规程要求随断路器定检开展防跳功能试验,对于更换了防跳继电器的情况,要特别注意检查防跳继电器动作时间与保护跳闸时间的配合关系。

2  防跳试验中存在的问题分析
2.1  常见试验方法
常见的断路器防跳试验方法一般有两种:
1)手动摁住断路器手合按钮不放(模拟手合触点粘死),用继电保护校验仪在保护装置中加故障量,观察断路器操作箱面板灯变化及断路器动作情况,未发生合闸现象则判断防跳回路完好。
2)在保护屏内端子排上用一根短接线短接手合或重合触点,用另外一根短接线依次短接跳闸触点,观察断路器操作箱面板灯变化及断路器动作情况,未发生合闸现象则判断防跳回路完好。
2.2  存在的问题
1)人工手合时手合令返回时间不确定,或手合触点接触不可靠,无法确保合闸回路可靠接通,易造成防跳误判,且所需试验人员较多,效率不高。
2)未考虑跳闸令与防跳继电器动作时间配合问题。如果防跳继电器动作时间过长(大于150ms),试验时跳闸令发出时间可能也很长(大于1s),这种情况下防跳继电器会正常闭锁合闸回路,起到防跳作用,试验成功。断路器动作时序如图2所示。
但是实际运行中故障后保护装置仅需20ms就会开出跳闸令[9],40ms后断路器就分闸到位,这种情况下防跳继电器还未动作,起不到闭锁合闸的作用,开关会再次合闸,防跳失败。断路器动作时序如图3所示。所以这种试验方式会造成误判,不能发现防跳回路存在的隐患。

图2  断路器动作时序(防跳成功,误判)

图3  断路器动作时序(防跳失败)

3  试验方法优化
从以上的分析可以看出,防跳继电器的动作特性对防跳功能至关重要,而且在试验中容易被忽视。断路器合闸到位后,防跳继电器开始励磁,到防跳继电器的触点动作,这个时间是基本固定的。考虑到500kV系统保护的最快动作时间在20ms左右,加上断路器的分闸时间约20ms,所以防跳继电器的动作时间不应超过40ms,否则断路器分闸到位后防跳继电器还未动作,起不到闭锁合闸的作用,防跳功能就存在隐患。
也就是说,进行防跳试验时,要重点检查防跳继电器能不能在最快的保护(比如线路的工频变化量距离保护)动作后正确闭锁合闸回路,这样才能准确判断防跳功能是否正常,否则就可能出现误判。
本文以某电站500kV断路器的防跳回路为例进行分析。具体防跳回路接线如图1所示,防跳继电器的动作时间和断路器的分合闸时间见表1和表2。

表1  防跳继电器动作时间测试结果

表2  断路器分合闸时间测试结果
以表1和表2数据进行时序分析,断路器合闸令发出后,大约70ms合闸到位,此时防跳继电器52YA开始励磁,约16ms后防跳触点52YA1断开,闭锁合闸回路;同时断路器合闸到位后,若线路存在短路故障,则线路保护装置20ms动作出口跳闸,再经20ms后分闸到位,此时合闸回路已被防跳继电器断开,能够正常闭锁合闸。断路器合于故障后动作时序如图4所示。

图4  断路器合于故障后动作时序
基于上述分析结果,本文认为做防跳试验时要特别注意断路器合闸时间与保护跳闸时间的配合,常见试验方法中合断路器后人工加故障量或短接跳闸触点的方式都达不到毫秒级的时间配合要求,所以本文利用继电保护校验仪的状态序列功能来进行试验,就能够很容易进行时间间隔控制。
首先,为了准确反映断路器的合闸位置,在断路器检修时从断路器两侧接地开关的接地连片拆引处引出两根试验线(GIS设备断路器无外露接线点,需要合上接地开关,并拆除接地连片),接至继电保护校验仪的开入回路,然后从继电保护校验仪的开出回路接两根试验线至断路器的跳闸回路。防跳试验接线示意图如图5所示。
具体试验方法如下:
(1)按图5所示方法完成试验接线。
(2)使用状态序列功能,在状态1的状态触发条件中勾选“开入量旋转触发”,将状态1状态名称选择为“故障前状态”,也就是断路器合闸后进入状态1。

图5  防跳试验接线示意图
(3)在状态1序列的开关量输入栏勾选实际接线通道。
(4)将状态1序列的开关量输出栏对应实际接线通道勾选闭合。
(5)将状态1序列开关量输出保持时间设置为0s,本阶段开关量不开出。
(6)将状态1序列触发后延时设置为20ms(参照保护装置的最快动作时间设置)。
(7)将状态2状态名称选择为“故障状态”,触发条件勾选“最长状态时间”,最长状态时间选择200ms,确保断路器正常分合时间。
(8)将状态2开关量输出栏对应实际接线通道勾选闭合,开关量输出保持时间设置200ms,确保断路器分闸令有效。
(9)启动状态序列试验,现地合断路器并保持断路器合闸旋钮不放(大于1s),检查断路器合闸后正常分闸,未再次合闸即确认防跳功能正常。

4  结论
本文对断路器防跳功能进行了分析,重点分析了防跳回路中防跳继电器与保护跳闸令动作的时间配合问题,指出了常见试验方法中存在的不足,并结合某电站的实际防跳试验过程,提出了试验的优化方法,该试验方法能够准确发现防跳回路中存在的问题,具有很好的实践意义。



本文编自2022年第5期《电气技术》,论文标题为“500kV断路器防跳试验方法优化”,作者为孙大根。



您有10位好友已关注

扫码看看?👇


推荐阅读:汇总!这些高校电气工程通过认证,进入全球工程教育“第一方阵”!》《offer比较:国网直属单位 北京or天津 vs 北京快手,薪资差2倍》《重磅发布:2022软科世界一流学科排名》《电气毕业6年年薪50万!》《电网薪资揭秘第二波!》电气应届生年薪40W+!《电网薪资揭秘第三波!
电气小青年 源于2016,13W电气电力人的聚集地。
评论 (0)
  • 在 AI 浪潮席卷下,厨电行业正经历着深刻变革。AWE 2025期间,万得厨对外首次发布了wan AiOS 1.0组织体超智能系统——通过AI技术能够帮助全球家庭实现从健康检测、膳食推荐,到食材即时配送,再到一步烹饪、营养总结的个性化健康膳食管理。这一创新之举并非偶然的个案,而是整个厨电行业大步迈向智能化、数字化转型浪潮的一个关键注脚,折射出全行业对 AI 赋能的热切渴求。前有标兵后有追兵,万得厨面临着高昂的研发成本与技术迭代压力,稍有懈怠便可能被后来者赶
    用户1742991715177 2025-05-11 22:44 22浏览
  • 体积大小:14*11*2.6CM,电气参数:输入100V-240V/10A,输出16V24A。PCB 正面如下图。PCB 背面如下图。根据实际功能可以将PCB分成几部分:EMI滤波,PFC电路,LLC电路。EMI滤波区域,两级共模电感,LN各用了保险丝加压敏电阻,继电器(HF32FV-G)用来切除NTC的,为了提高效率点,如下图。PFC电路区域,如下图。LLC电路区域,如下图。详细分析一下该电源用的主要IC还有功率器件。AC侧采用了两颗整流桥进行并联,器件增加电流应力,如下图。共模电感都有放电针
    liweicheng 2025-05-10 20:03 12浏览
  •   定制软件开发公司推荐清单   在企业数字化转型加速的2025年,定制软件开发需求愈发多元复杂。不同行业、技术偏好与服务模式的企业,对开发公司的要求大相径庭。以下从技术赛道、服务模式及行业场景出发,为您提供适配的定制软件开发公司推荐及选择建议。   华盛恒辉科技有限公司:是一家专注于高端软件定制开发服务和高端建设的服务机构,致力于为企业提供全面、系统的开发制作方案。在部队政企开发、建设到运营推广领域拥有丰富经验,在教育,工业,医疗,APP,管理,商城,人工智能,部队软件、工业软件、数字化转
    华盛恒辉l58ll334744 2025-05-12 15:55 0浏览
  • 【拆解】+自动喷香机拆解 家里之前买了从PDD买了一个小型自动喷香机放在厕所里。来增加家里的温馨感,这东西看着确实小巧,精致。可是这东西吧,耗电就是快,没过几天就没电了。今个就让我拆开看看什么在捣鬼。如下是产品的实物和宣传图: 由于螺丝孔太小和限位很深。对于我的螺丝刀套装没用。只能使用那种螺丝刀细头,同时又长的小螺丝刀进行拆解 拧下三颗螺丝钉,用一字螺丝刀撬开外壳,内部结构就呈现在眼前。 内部构造相当简单,部件没多少。就是锂电池供电,通过MCU实现按键控制,段码屏控制,LE
    zhusx123 2025-05-10 19:55 17浏览
  • 【拆解】+CamFi卡菲单反无线传输器拆解 对于单反爱好者,想要通过远程控制自拍怎么办呢。一个远程连接,远程控制相机拍摄的工具再合适不过了。今天给大伙介绍的是CamFi卡菲单反无线传输器。 CamFi 是专为数码单反相机打造的无线传输控制器,自带的 WiFi 功能(无需手机流量),不但可通过手机、平板、电脑等设备远程连接操作单反相机进行拍摄,而且还可实时传输相机拍摄的照片到 iPad 和电视等大屏设备进行查看和分享。 CamFi 支持大部分佳能和尼康单反相机,内置可充电锂离子电池,无需相机供电。
    zhusx123 2025-05-11 14:14 19浏览
  • 递交招股书近一年后,曹操出行 IPO 进程终于迎来关键节点。从 2024 年 4 月首次递表,到 2025 年 4 月顺利通过中国证监会境外发行上市备案,并迅速更新招股书。而通过上市备案也标志着其赴港IPO进程进入实质性推进阶段,曹操出行最快有望于2025年内完成港股上市,成为李书福商业版图中又一关键落子。行路至此,曹操出行面临的挑战依然不容忽视。当下的网约车赛道,早已不是当年群雄逐鹿的草莽时代,市场渐趋饱和,竞争近乎白热化。曹操出行此时冲刺上市,既是背水一战,也是谋篇布局。其招股书中披露的资金
    用户1742991715177 2025-05-10 21:18 25浏览
  • ‌磁光克尔效应(Magneto-Optic Kerr Effect, MOKE)‌ 是指当线偏振光入射到磁性材料表面并反射后,其偏振状态(偏振面旋转角度和椭偏率)因材料的磁化强度或方向发生改变的现象。具体表现为:1、‌偏振面旋转‌:反射光的偏振方向相对于入射光发生偏转(克尔旋转角 θK)。2、‌椭偏率变化‌:反射光由线偏振变为椭圆偏振(克尔椭偏率 εK)。这一效应直接关联材料的磁化状态,是表征磁性材料(如铁磁体、反铁磁体)磁学性质的重要非接触式光学探测手段,广泛用于
    锦正茂科技 2025-05-12 11:02 23浏览
  • 在印度与巴基斯坦的军事对峙情境下,歼10C的出色表现如同一颗投入平静湖面的巨石,激起层层涟漪,深刻印证了“质量大于数量”这一铁律。军事领域,技术优势就是决定胜负的关键钥匙。歼10C凭借先进的航电系统、强大的武器挂载能力以及卓越的机动性能,在战场上大放异彩。它能够精准捕捉目标,迅速发动攻击,以一敌多却毫不逊色。与之形成鲜明对比的是,单纯依靠数量堆砌的军事力量,在面对先进技术装备时,往往显得力不从心。这一现象绝非局限于军事范畴,在当今社会的各个领域,“质量大于数量”都已成为不可逆转的趋势。在科技行业
    curton 2025-05-11 19:09 149浏览
  • 蓝牙耳机是长这个样子,如下图。背部图,如下图。拆开L耳的一侧,有NFC和电池包(501230 3.7V 150mAh)如下图。电池包(501230 3.7V 150mAh)如下图。NFC正面,如下图。NFC背面,如下图。如何理解NFC的工作原理呢,搜集一下相关的资料,如下图。拆开R耳的一侧,PCB正面,如下图。PCB背面,如下图。有两组红黑的线,一组连接到了喇叭,另一组连接到了MIC头上,MIC头参数如下图。蓝牙模块(CSR 8635),有蛇形PCB走线做成天线,节约了天线成本,如下图。该IC介
    liweicheng 2025-05-10 00:45 9浏览
  •         信创产业含义的“信息技术应用创新”一词,最早公开信息见于2019年3月26日,在江苏南京召开的信息技术应用创新研讨会。本次大会主办单位为江苏省工业和信息化厅和中国电子工业标准化技术协会安全可靠工作委员会。        2019年5月16日,美国将华为列入实体清单,在未获得美国商务部许可的情况下,美国企业将无法向华为供应产品。       2019年6
    天涯书生 2025-05-11 10:41 87浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦