500kV断路器防跳试验方法优化

电气小青年 2022-07-24 19:38

断路器合闸回路一般都设计有防跳功能,防止断路器异常重复合闸。为保证防跳回路运行可靠,需要定期对防跳回路进行试验检查,常见的防跳试验方法都着重验证回路的正确性,忽视了验证防跳继电器动作时间是否满足要求的问题,容易导致误判。国能大渡河瀑布沟水力发电总厂的研究人员孙大根,在2022年第5期《电气技术》上撰文,介绍了一种新的试验方法,能够可靠检查防跳回路是否存在异常,为设备安全稳定运行提供保障。


500kV断路器是电力系统的关键设备,主要起到关合、承载和开断正常运行电流及短路电流的作用。如果断路器汇控柜或监控系统合闸命令触点粘连造成合闸回路一直带电,当设备出现故障导致开关跳闸时,合闸令会使断路器继续合闸,一般情况下故障电流可达到数倍额定电流,会对故障设备和断路器本身都造成极大损害,严重时甚至造成断路器爆炸,所以在断路器合闸回路中设计有防跳功能,可以防止断路器异常重复合闸。
为保证防跳回路运行可靠,需要结合断路器定检开展防跳功能验证工作。目前,一般的防跳试验方法是手动将合闸把手切至合闸位置保持不变(模拟合闸令触点粘连),然后通过在保护装置加故障量,使保护装置动作或直接在保护屏内短接跳闸令跳断路器,观察断路器是否继续合闸来判断防跳功能是否正常。
这种方法能够验证防跳回路是否正常,但是不易检查出防跳继电器动作时间不满足要求的情况,可能会出现误判防跳功能正常的情况。如果运行中断路器快速保护动作,会出现断路器分闸后防跳继电器触点仍未到位的情况,不能闭锁合闸功能,导致断路器继续合闸,影响设备安全稳定运行。

1  防跳回路介绍
某电站500kV断路器采用断路器本体的防跳功能,合闸回路及防跳回路接线如图1所示。正常情况下,断路器操作压力及SF6气体压力正常,无闭锁信号,断路器收到合闸令后,合闸令1SHJ、防跳继电器触点52YA、分闸位置52b/1、操作压力闭锁触点GLX、SF6气体压力闭锁触点HL均闭合,合闸线圈励磁,断路器正常合闸;合闸到位后,断路器合闸位置触头52a/1闭合,防跳继电器52YA励磁并自保持,将合闸回路中的52YA1(常闭)触点断开,此时即使合闸令粘连,断路器因故障跳开后也无法继续合闸,起到防跳的作用。

图1  断路器合闸及防跳回路接线
为检查防跳回路工作情况,按照规程要求随断路器定检开展防跳功能试验,对于更换了防跳继电器的情况,要特别注意检查防跳继电器动作时间与保护跳闸时间的配合关系。

2  防跳试验中存在的问题分析
2.1  常见试验方法
常见的断路器防跳试验方法一般有两种:
1)手动摁住断路器手合按钮不放(模拟手合触点粘死),用继电保护校验仪在保护装置中加故障量,观察断路器操作箱面板灯变化及断路器动作情况,未发生合闸现象则判断防跳回路完好。
2)在保护屏内端子排上用一根短接线短接手合或重合触点,用另外一根短接线依次短接跳闸触点,观察断路器操作箱面板灯变化及断路器动作情况,未发生合闸现象则判断防跳回路完好。
2.2  存在的问题
1)人工手合时手合令返回时间不确定,或手合触点接触不可靠,无法确保合闸回路可靠接通,易造成防跳误判,且所需试验人员较多,效率不高。
2)未考虑跳闸令与防跳继电器动作时间配合问题。如果防跳继电器动作时间过长(大于150ms),试验时跳闸令发出时间可能也很长(大于1s),这种情况下防跳继电器会正常闭锁合闸回路,起到防跳作用,试验成功。断路器动作时序如图2所示。
但是实际运行中故障后保护装置仅需20ms就会开出跳闸令[9],40ms后断路器就分闸到位,这种情况下防跳继电器还未动作,起不到闭锁合闸的作用,开关会再次合闸,防跳失败。断路器动作时序如图3所示。所以这种试验方式会造成误判,不能发现防跳回路存在的隐患。

图2  断路器动作时序(防跳成功,误判)

图3  断路器动作时序(防跳失败)

3  试验方法优化
从以上的分析可以看出,防跳继电器的动作特性对防跳功能至关重要,而且在试验中容易被忽视。断路器合闸到位后,防跳继电器开始励磁,到防跳继电器的触点动作,这个时间是基本固定的。考虑到500kV系统保护的最快动作时间在20ms左右,加上断路器的分闸时间约20ms,所以防跳继电器的动作时间不应超过40ms,否则断路器分闸到位后防跳继电器还未动作,起不到闭锁合闸的作用,防跳功能就存在隐患。
也就是说,进行防跳试验时,要重点检查防跳继电器能不能在最快的保护(比如线路的工频变化量距离保护)动作后正确闭锁合闸回路,这样才能准确判断防跳功能是否正常,否则就可能出现误判。
本文以某电站500kV断路器的防跳回路为例进行分析。具体防跳回路接线如图1所示,防跳继电器的动作时间和断路器的分合闸时间见表1和表2。

表1  防跳继电器动作时间测试结果

表2  断路器分合闸时间测试结果
以表1和表2数据进行时序分析,断路器合闸令发出后,大约70ms合闸到位,此时防跳继电器52YA开始励磁,约16ms后防跳触点52YA1断开,闭锁合闸回路;同时断路器合闸到位后,若线路存在短路故障,则线路保护装置20ms动作出口跳闸,再经20ms后分闸到位,此时合闸回路已被防跳继电器断开,能够正常闭锁合闸。断路器合于故障后动作时序如图4所示。

图4  断路器合于故障后动作时序
基于上述分析结果,本文认为做防跳试验时要特别注意断路器合闸时间与保护跳闸时间的配合,常见试验方法中合断路器后人工加故障量或短接跳闸触点的方式都达不到毫秒级的时间配合要求,所以本文利用继电保护校验仪的状态序列功能来进行试验,就能够很容易进行时间间隔控制。
首先,为了准确反映断路器的合闸位置,在断路器检修时从断路器两侧接地开关的接地连片拆引处引出两根试验线(GIS设备断路器无外露接线点,需要合上接地开关,并拆除接地连片),接至继电保护校验仪的开入回路,然后从继电保护校验仪的开出回路接两根试验线至断路器的跳闸回路。防跳试验接线示意图如图5所示。
具体试验方法如下:
(1)按图5所示方法完成试验接线。
(2)使用状态序列功能,在状态1的状态触发条件中勾选“开入量旋转触发”,将状态1状态名称选择为“故障前状态”,也就是断路器合闸后进入状态1。

图5  防跳试验接线示意图
(3)在状态1序列的开关量输入栏勾选实际接线通道。
(4)将状态1序列的开关量输出栏对应实际接线通道勾选闭合。
(5)将状态1序列开关量输出保持时间设置为0s,本阶段开关量不开出。
(6)将状态1序列触发后延时设置为20ms(参照保护装置的最快动作时间设置)。
(7)将状态2状态名称选择为“故障状态”,触发条件勾选“最长状态时间”,最长状态时间选择200ms,确保断路器正常分合时间。
(8)将状态2开关量输出栏对应实际接线通道勾选闭合,开关量输出保持时间设置200ms,确保断路器分闸令有效。
(9)启动状态序列试验,现地合断路器并保持断路器合闸旋钮不放(大于1s),检查断路器合闸后正常分闸,未再次合闸即确认防跳功能正常。

4  结论
本文对断路器防跳功能进行了分析,重点分析了防跳回路中防跳继电器与保护跳闸令动作的时间配合问题,指出了常见试验方法中存在的不足,并结合某电站的实际防跳试验过程,提出了试验的优化方法,该试验方法能够准确发现防跳回路中存在的问题,具有很好的实践意义。



本文编自2022年第5期《电气技术》,论文标题为“500kV断路器防跳试验方法优化”,作者为孙大根。



您有10位好友已关注

扫码看看?👇


推荐阅读:汇总!这些高校电气工程通过认证,进入全球工程教育“第一方阵”!》《offer比较:国网直属单位 北京or天津 vs 北京快手,薪资差2倍》《重磅发布:2022软科世界一流学科排名》《电气毕业6年年薪50万!》《电网薪资揭秘第二波!》电气应届生年薪40W+!《电网薪资揭秘第三波!
电气小青年 源于2016,13W电气电力人的聚集地。
评论
  • 在智能化技术快速发展当下,图像数据的采集与处理逐渐成为自动驾驶、工业等领域的一项关键技术。高质量的图像数据采集与算法集成测试都是确保系统性能和可靠性的关键。随着技术的不断进步,对于图像数据的采集、处理和分析的需求日益增长,这不仅要求我们拥有高性能的相机硬件,还要求我们能够高效地集成和测试各种算法。我们探索了一种多源相机数据采集与算法集成测试方案,能够满足不同应用场景下对图像采集和算法测试的多样化需求,确保数据的准确性和算法的有效性。一、相机组成相机一般由镜头(Lens),图像传感器(Image
    康谋 2024-12-12 09:45 74浏览
  • 本文介绍瑞芯微RK3588主板/开发板Android12系统下,APK签名文件生成方法。触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,该开发板是核心板加底板设计,音视频接口、通信接口等各类接口一应俱全,可帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。工具准备下载Keytool-ImportKeyPair工具在源码:build/target/product/security/系统初始签名文件目录中,将以下三个文件拷贝出来:platform.pem;platform.
    Industio_触觉智能 2024-12-12 10:27 43浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 110浏览
  • 应用环境与极具挑战性的测试需求在服务器制造领域里,系统整合测试(System Integration Test;SIT)是确保产品质量和性能的关键步骤。随着服务器系统的复杂性不断提升,包括:多种硬件组件、操作系统、虚拟化平台以及各种应用程序和服务的整合,服务器制造商面临着更有挑战性的测试需求。这些挑战主要体现在以下五个方面:1. 硬件和软件的高度整合:现代服务器通常包括多个处理器、内存模块、储存设备和网络接口。这些硬件组件必须与操作系统及应用软件无缝整合。SIT测试可以帮助制造商确保这些不同组件
    百佳泰测试实验室 2024-12-12 17:45 39浏览
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 82浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-12 10:13 31浏览
  • 全球智能电视时代来临这年头若是消费者想随意地从各个通路中选购电视时,不难发现目前市场上的产品都已是具有智能联网功能的智能电视了,可以宣告智能电视的普及时代已到临!Google从2021年开始大力推广Google TV(即原Android TV的升级版),其他各大品牌商也都跟进推出搭载Google TV操作系统的机种,除了Google TV外,LG、Samsung、Panasonic等大厂牌也开发出自家的智能电视平台,可以看出各家业者都一致地看好这块大饼。智能电视的Wi-Fi连线怎么消失了?智能电
    百佳泰测试实验室 2024-12-12 17:33 45浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 83浏览
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 68浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 109浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦