FPGA设计-时序约束(中篇-实例分析)

李肖遥 2020-03-31 00:00

现有一块ADC连接到FPGA上,需要在FPGA上实现高速数据的读取,那么第一步自然就是完成可靠的硬件连线,其中需要注意的是:


1. 注意信号的完整性,尽可能的避免边沿退化;这两区分两个概念:


    i. 高速信号,指的是信号翻转,由高电平到低电平或者反之所耗得时间非常小;可能一个1MHz的TTL信号或者LVDS信号,只要边沿足够陡,那也算是高速信号!


    ii. 高频信号,一般指的是周期性信号的周期时间足够小;


    iii. 也就是说高速信号不一定是高频的;数字信号一般都是高速信号,所以必须要保证其边沿的完整性,如果边沿发生退化或者变形,那么将相当于加入了额外的时序上的偏差;


2. 保持时钟信号和数据信号路径等长,不管是单端还是差分信号,需要用绕线等形式迫使两类线几乎等长;这个在之前的时序分析中非常重要,如果真的不能够做到等长,甚至差的还挺多的,也必须提前获得该差值,并将则合成时间差,在后面的时序分析中将会有用;


保证以上两点后,就可以着手时序的分析了,那么首先我们会得到目标器件ADC的时序,如下图所示:


 


图 1 某ADC的时序图


从上图中我们首先得到几个信息:


1. 这是个同步时序,由两类信号组成,时钟信号DCO和数据信号FCO以及D(忽略它们是差分信号,下面的分析会把它画成单端信号,简化好画一点)


2. 这是个DDR信号,DDR指的是数据是同步于时钟信号的上升、下降边沿,所以该类同步信号需要引入虚拟时钟概念,后面继续介绍;


3. 信号是不是边沿对齐,而是偏移了90度!也就是说DCO边沿翻转后,数据信号没有第一时间翻转,而是延后了四分之一个周期,这是高速信号惯用的伎俩,后面会发现,这个延时让时序更好分析;


将FCO信号和D信号的实际意义扔一边,在设计者看来,他们都仅仅是数据而已,将上面的时序图简化成下图:


 


图 2 简化后的时序图


可以看到,实际上所有的数据信号都是同步于DCO的边沿,但是并不是对齐的,而是相差了90度,同时还是个DDR系统(上下边沿都是Launch Edge)


一般来说DDR系统会引入一个虚拟时钟的概念,就是说DCO是实际存在的时钟,设计和虚构出一个2倍频的DCOX2时钟,并将其相移180度以后,我们重新得到了下图:


 


图 3 引入虚拟时钟后的数据时序图


引入虚拟时钟后,我们重新规划Launch Edge,将其规划到DCOX2-Shift180的上升沿,其所对应的的Latch Edge仍然还是在DCO上。


到目前为止,我们已经很清楚的规划了ADC的时钟和数据输出的关系,至于如何用SDC语言描述,见下文;接下来就要考虑到这些信号实际上是各自经过PCB走线后来到FPGA的引脚,从FPGA引脚由进入到FPGA内部,然后又经过各自的FPGA内部走线延时以后来到了他们目标的寄存器,如下图所示:


 


图 4 傻瓜化后的ADC和FPGA的信号流向图


从上图可以获知:


1. ADC内部看起来有一个源时钟,这个源时钟我们不用管怎么产生,它分成了两路,其中一路经过倍频+移相后触发了ADC上的REG0(就是说其上升沿作为Launch Edge),另一路直接输出到ADC引脚DCO;


2. 数据由REG0产生后输出至ADC引脚D,经过一个延时后来到FPGA的相应输入引脚D`,与此同时,DCO引脚也经由PCB来到了FPGA的输入引脚DCO`;


3. 这两个信号进入FPGA后,都各自分成了两路,分别经过各自的延时来到其目标:


    a) DCO`引脚输入后,进过TCLK2,来到了REG1的clk引脚


    b) DCO`引脚输入后,进过TCLK3,来到了REG2的clk引脚


    c) D`引脚输入后,进过Tdata2,来到了REG1的D引脚


    d) D`引脚输入后,进过Tdata3,来到了REG2的D引脚


4. REG1和REG2有所区别,一个是上升沿触发,一个是下降沿触发(clk前加了个小圈圈),这是因为latch edge本来就是上升沿又有下降沿的;后期实际上也可以给DCO`也引入虚拟时钟,这里不表;


5. 不管是REG1还是REG2,想要锁存latch数据就必须满足建立时间和保持时间,这个在下文的图中也有所体现;


说了那么多,都不如实际的时序图来的实际,下面放图:


 

图 5 实际时序分析


上图由三个颜色的时序,分别是:


1. 紫色代表DAT,也就是数据到达时间,它由Tco(图中没有体现,可以参考手册)、Tdata1和Tdata2三者构成,是不是和我们的DAT定义不一样?公式是死的,只需要理解其意思就可以。和公式相比少了Tclk(源时钟到REG0的clk的延时),是因为我们不需要考虑这个延时,我们是根据ADC数据手册的时序图反推回里面的结构图,所以所有延时在反推的过程中已经都被体现或者被折合!


2. 绿色伙同棕色线,表达出两个意思DRTsu和DRTh,分别代表数据建立所需时间和数据保持所需时间;


3. 将两者按照定义做减法,就能够得到建立时间裕量和保持时间裕量!


如上图所示,棕色线所划分的时间窗中,REG1.D已经是新的数据,而且在这个时间窗内并没有变化,所以就同时满足了建立时间裕量大于0和保持时间裕量大于0两个关系,这样的时序是稳定的!


但是这个只是图示而已,所有的Tdata1、2、3以及Tclk1、2、3都是我们目前假设的,在实际进行约束时,那些量时需要设计者提前设定,而那些量是自动生成的那?答案是:


1. Tdata1和Tclk1是由PCB实际布线所决定的,如果能够按照等长布线规则,就能够让两者相互抵消;


2. DCO和DCOX2-shift180的时序是由器件决定的;


3. Tdata2、3,Tclk2、3是FPGA在布线时自动产生的!


所以说这里我们只需要告诉FPGA,DCO`和D`之间的时序关系就可以了,要获得这两者之间的时序关系,我们就必须获得DCO和D之间的原始关系,以及他们是如何被布线延时变成DCO`和D`的;如何去描述上面所说的这种关系呢?利用SDC文件!


也就是说SDC文件就是要准确的告诉FPGA,所有输入(输出先不管)信号在进入FPGA时会是个什么样子,然后根据这个信息,FPGA会自动布线,使得REG1和REG2能够获得正确的数据;如果万一SDC文件所描述的时序关系非常的恶劣,将会导致不管FPGA怎么优化布线和布局,都不能够实现正确时时序时,就会输出报错,这个在以后的文章TimeQuest TA中会有详细的分析;那么接下来就开始写SDC文件吧;




#设置各种延时常数


#这里假设ADC片上的延时都为0


    set ADC_CLKs_max 0


    set ADC_CLKs_min 0


    Set ADC_CLKd_max 0


    set ADC_CLKd_min 0


# 同时根据ADC手册去设置Launch edge到有效数据之间的延时,这里假设他为X


    set ADC_tCO_max X


    set ADC_tCO_min X


#这里设置时钟信号和数据信号在PCB板上的延时差,即使是等长布线,我们也要可以给


#定两个值,这样可以给FPGA布线更多的压力,使得后期布线会往一个最理想的方向进行,


#分别是


    set ADC_BD_min XX


    set ADC_BD_max XX


 


 


#设置两个时钟,第一个时钟为DCO,它会从FPGA的DCO引脚输入


#另一个时钟是虚拟时钟,根据设置,它是DCO的两倍频,而且有180度的相移


#这两个时钟之间是同步的,一个是很是存在的,另一个是虚拟的!


    create_clock -name DCO-period 5-waveform {1.25   3.75} [get_ports {DCO}]


    create_clock -name DCO_virtual-period 2.5 -waveform {0    1.25}


 


 


#最后将所有的数据引脚同步到DCO_virtual的上升沿,根据上面的延时常数设置输入延时和


#输出延时,这条语句非常关键,它告诉FPGA所有的输入信号,在进入FPGA之前,相对于


#时钟存在怎么样的关系!


    set_input_delay -clock DCO_virtual -max [expr $ADC_CLKs_max + $ADC_tCO_max + $ADC_BD_max - $ADC_CLKd_min] [get_ports {D*}]


    set_input_delay -clock DCO_virtual -min [expr $ADC_CLKs_min + $ADC_tCO_min + $ADC_BD_min - $ADC_CLKd_max] [get_ports {}D*}]


 


SDC文件解释


1. 蓝色底部分代表定义一些延时参数,这些延时参数都是根据实际的PCB布线或者是ADC的书籍参数来设定的


2. 绿色底部分设定同步时钟,如果有必要的话还要设置虚拟时钟;


3. 紫色底部分将所有的输入信号同步到时钟,在这里这个时钟是虚拟时钟,因为我们假设虚拟时钟的上升沿是launch edge,这里其实可以也可以同步到DCO上,但就要设置下降沿同步,会显得比较麻烦;但是一样都是可以实现的!


通过上面的语句,FPGA就知道了,这些属于信号之间的关系:D和DCO之间的关系,D和DCOX2-shift180(就是DCO_Virtual)之间关系;


    

推荐阅读

(点击标题可跳转阅读)

嵌入式系统词汇表

【Linux设备驱动】系列汇总,我写了什么?

【24小时学通Linux内核】系列,你想知道的都在这里

李肖遥 公众号“技术让梦想更伟大”,作者:李肖遥,专注嵌入式,只推荐适合你的博文,干货,技术心得,与君共勉。
评论 (0)
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 66浏览
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 52浏览
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 69浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 64浏览
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 49浏览
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 64浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 127浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 116浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 99浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 33浏览
我要评论
0
1
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦