一文聊聊自动驾驶中的行人轨迹预测

智驾最前沿 2022-07-26 08:30

--关注回复“40429--

领取:《汽车驾驶自动化分级》(GB/T 40429-2021)

近年来,行人轨迹预测在多个领域中受到越来越多的关注,例如自动驾驶汽车、智能交通、智慧城市等领域。行人作为交通场景中的主要参与者,对其未来运动轨迹的合理推理和预测对于自动驾驶和道路安全至关重要。在交通场景中,行人的运动轨迹不仅会受到本身意图的影响,还会受到周围行人、车辆的影响,所以行人轨迹预测是一项极具挑战性的工作。本文的内容分为三个部分,首先将论文中常用的行人轨迹预测方法进行分类,包括基于LSTM的轨迹预测方法、基于GCN网络轨迹预测方法、基于GAN网络的轨迹预测方法,接着对行人轨迹预测的难点进行探讨,最后对行人轨迹预测的发展趋势做出总结与展望。

行人轨迹预测方法

目前广泛应用在行人轨迹预测领域的方法主要包括基于LSTM网络、GCN网络和GAN网络的轨迹预测方法,这些网络在训练完成后对同类型输入具有很好的适用性,拥有较高的轨迹预测精度。下面对应用以上网络模型的方法分别展开介绍。

基于LSTM的行人轨迹预测方法

循环神经网络(Recurrent Neural Network,RNN)[1]是最早用于行人轨迹预测的模型,它通过输入和存储在历史网络中信息共同决定输出,RNN通过这种特性使其能够根据历史序列信息去预测未来值。但传统的RNN网络面临的一个缺点是会将所有历史信息都存储于网络之中,在训练时会导致大型网络产生梯度消失或者梯度爆炸。而在行人轨迹预测中,需要大量的网络节点和庞大的数据集对网络进行训练以提高预测的精度。因此传统的RNN将不能满足行人轨迹预测的需求。

为了解决RNN在复杂时序的预测问题,Hochreiter等人提出了长短时记忆网络(Long Short-Term Memory, LSTM),它是一种特殊的RNN结构,能轻松地学习到长期依赖的信息。LSTM通过增加遗忘网络层来丢弃导致错误预测结果的信息,在解决梯度消失问题的同时提升网络预测的精度。

为了将LSTM应用到行人轨迹预测的方法中,Alahi等[2]提出了一种Social LSTM网络,网络结构如图1所示。Social LSTM方法解决了以往工作中行人轨迹预测遇到的两个难点:(1)现有的模型不能通过数据驱动的方式来展示交互关系,需要手工构造函数来表现出来,导致模型只能捕捉简单的交互情景。(2)现有的轨迹预测工作中所针对的任务通常是距离很相近的情景,而没有考虑更远距离可能发生的交互问题。针对这两个难点,论文提出了一种Social LSTM模型,通过为场景中的每个行人配备一个独立的LSTM网络,用于预测其运动轨迹;通过社交池(s-pooling)层相互连接来计算周围其他行人交互产生的影响。Social LSTM填补早期工作的空白,实现了很好的行人轨迹预测效果。

图1 social lstm模型结构

Zhu等[3]提出了一种StarNet星型拓扑网络,如图2所示。通过对行人之间的全局交互建模实现高效的行人轨迹预测。该模型中Hub Network模块是基于LSTM的全局时序交互计算网络,用于获取所有行人的观察轨迹。Host Network是基于LSTM的轨迹预测网络,每个Host Network对应一个行人,通过参考描述信息对未来轨迹进行预测。在ETH和UCY数据集上,该网络在80%的场景下都优于其他算法,且实时性高。

由以上的分析可知,基于LSTM的神经网络模型主要解决行人本身对轨迹的影响问题,再根据社会交互模型的结论去修正目标预测轨迹,进而得出更加准确的预测结果。

图2 StarNet模型结构

基于GCN的行人轨迹预测方法

图卷积神经网络(Graph Convolutional Networks,GCN)是一种能对图数据进行深度学习的方法,通过使用图的边和节点数据作为输入进行学习训练。在行人轨迹预测领域,GCN通过加入时空数据进行行人轨迹预测,因而能够理解行人行为从而加快社交互动的建模进度,所以GCN在轨迹预测方向有很大的应用前景。

为了将GCN应用到行人轨迹预测的工作中,Shi等[4]提出一种用于行人轨迹预测的稀疏图卷积网络模型(SGCN),解决了行人密集无向交互中存在的建模冗余和忽略轨迹运动趋势的问题。模型框架如图3所示,通过使用稀疏有向空间图对稀疏有向交互进行建模,以捕获自适应交互行人;使用稀疏有向时间图来建模运动趋势,便于对观测方向进行预测。将上述两种稀疏图融合在一起,推算出用于轨迹预测的双高斯分布参数进行轨迹预测,最终在ETH和UCY数据集上实现了精准的行人轨迹预测结果。

图3 GCN网络架构

Bae等[5]研究了基于社会关系的行人轨迹预测,针对现有轨迹预测方法过多估计行人个体的社会力量,无法解决过度避碰的问题,提出了一种用于社会纠缠行人轨迹预测的解耦多关系图卷积网络(DMRGCN),模型框架如图4所示。该模型中通过解耦的多尺度聚合区分相关的行人,使用多关系的GCN提取场景中复杂的社会交互行为,模型中加入全局的时间聚合函数用于补偿因过度避撞而累积的误差。实验结果在平均位移误差(ADE)和最终位移误差(FDE)上分别超过了最先进的方法,实现了准确的预测效果。

由上述论文的分析可知,GCN网络主要是将行人社交模型加入到预测模型之中,对行人历史轨迹进行优化处理,进而提升预测速度和预测精度,从而实现准确预测行人轨迹的目的。其缺点是不能够单独使用完成轨迹预测任务。

图4 DMRGCN网络架构

基于GAN的行人轨迹预测方法

生成式对抗网络(GAN, Generative Adversarial Networks)是一种无监督学习的深度学习模型,主要结构由两部分组成:生成器,用于学习数据的分布并生成相似的数据。鉴别器,计算来自真实数据的可能性,并将其分类为真实或虚假。GAN通过生成器和鉴别器的相互博弈来达到使网络相互学习的目的。在行人轨迹预测中加入GAN网络,可以解决过去仅能预测一条“最优”轨迹的缺陷,此网络能够预测多条可行的轨迹并通过博弈的思想进一步优化预测精度。

Gupta等[6]首次将GAN的对抗思想引入行人运动轨迹预测的任务中,提出一种Social GAN的轨迹预测方法。该网络将LSTM用作“运动编码器模块”处理时间信息,并采用“位置编码器模块”对空间交互进行建模,结合来自序列预测和生成对抗网络的工具来解决行人轨迹预测问题。模型结构如图5所示。

图5 Social GAN网络架构

由于GAN网络易受模式崩溃和模式下降的影响,Amirian等[7]提出了Social Way网络模型,通过加入info-GAN来改进多模式轨迹预测,避免GAN出现的问题,模型框架如图6所示。该模型是继Social LSTM、Social GAN模型之后的进一步提升,在理想的监控俯瞰数据库ETH、UCY上进行数据的预测,通过引入注意力机制使模型自主分配对交互信息的关注,并且模型结构上舍弃了L2代价函数,引入基于互信息的Information Loss,使得网络在多模态行人轨迹预测上有着良好的训练效果。

图6 Social Way模型框架

GAN网络能够在行人轨迹预测方面实现较好的预测效果,但也会存在一些缺点影响其网络性能。比如,(1)网络训练不稳定,容易出现梯度消失、模式崩溃等问题,进而造成生成结果较差。(2)GAN训练时需要达到纳什均衡才能够拥有良好的预测精度,若不满足则会导致网络不收敛。(3)由于网络训练过程中没有使用损失函数,造成我们对当前的训练效果处于一个未知的状态,如果网络训练过程中出现生成器退化现象,则网络将无法继续训练。

行人轨迹预测难点

目前最先进的论文方法中,对行人轨迹的预测会出现预测结果不准确的现象。结合论文进行分析可知,造成行人轨迹预测不准确的难点主要包括以下两个方面:

(1)行人运动方式灵活多变,预测其轨迹难度较大。

在现实中,相对于自行车、汽车等运动学模型,行人运动更加灵活,例如正在加速奔跑的行人可能会突然停止下来或者突然掉头再跑等动作,因此很难对行人建立合理的动力学模型,进而增加了行人轨迹预测的难度。

(2)行人之间的交互关系复杂且抽象,很难精确地进行建模。

行人轨迹往往不仅仅由行人本身的意图决定,很多时候也受周围行人的影响。在实际场景中,某一行人未来的运动不仅受自己意图支配,同样也受周围行人的影响。这种交互关系在算法中往往很难精确地建模出来。目前,大部分算法都是用相对空间关系来进行建模,例如相对位置、相对朝向、相对速度大小等。

常规算法模型的实现是找到一个输入到输出的函数映射,对于轨迹预测的模型来说,其对应着一个序列到另一个序列的映射,常规的模型或训练方式容易使模型预测结果陷入平均状态(预测结果倾向于预测一种折中的轨迹),显然使用常规的训练模型无法很好地对行人轨迹进行有效的预测。

本文对近年来行人轨迹预测领域部分最先进的方法进行了分类,并对不同的方法的优缺点进行了总结。结合轨迹预测的发展趋势可以看出,基于神经网络的行人轨迹预测算法能够实现较好的预测效果,也是论文中使用较为普遍的方法。而在实际场景的应用过程中,需要同时保证轨迹预测算法运行的高效性及识别的高精度性,在当前领域内轨迹预测技术在实际场景应用中还存在部分难点需要去克服。

轨迹预测技术在最近几年发展速度较快,伴随着传感器技术的不断发展,达到一个更加精准的行人轨迹预测更加易于实现。未来的发展中,相信轨迹预测技术走进实际生活的距离不会太遥远。

参考文献

[1] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv:1409.0473, 2014.

[2] Alahi A, Goel K, Ramanathan V, et al. Social lstm: Human trajectory prediction in crowded spaces[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 961-971.

[3] Zhu Y, Qian D, Ren D, et al. Starnet: Pedestrian trajectory prediction using deep neural network in star topology[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 8075-8080.

[4] Shi L, Wang L, Long C, et al. SGCN: Sparse graph convolution network for pedestrian trajectory prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 8994-9003.

[5] Bae I, Jeon H G. Disentangled multi-relational graph convolutional network for pedestrian trajectory prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(2): 911-919.

[6] Gupta A, Johnson J, Fei-Fei L, et al. Social gan: Socially acceptable trajectories with generative adversarial networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 2255-2264.

[7] Amirian J, Hayet J B, Pettré J. Social ways: Learning multi-modal distributions of pedestrian trajectories with gans[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2019: 0-0.

转载自智车科技,文中观点仅供分享交流,不代表本公众号立场,如涉及版权等问题,请您告知,我们将及时处理。

-- END --

智驾最前沿 「智驾最前沿」深耕自动驾驶领域技术、资讯等信息,解读行业现状、紧盯行业发展、挖掘行业前沿,致力于助力自动驾驶发展与落地!公众号:智驾最前沿
评论
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 155浏览
  • 故障现象 一辆2007款法拉利599 GTB车,搭载6.0 L V12自然吸气发动机(图1),累计行驶里程约为6万km。该车因发动机故障灯异常点亮进厂检修。 图1 发动机的布置 故障诊断接车后试车,发动机怠速轻微抖动,发动机故障灯长亮。用故障检测仪检测,发现发动机控制单元(NCM)中存储有故障代码“P0300 多缸失火”“P0309 气缸9失火”“P0307 气缸7失火”,初步判断发动机存在失火故障。考虑到该车使用年数较长,决定先使用虹科Pico汽车示波器进行相对压缩测试,以
    虹科Pico汽车示波器 2025-01-15 17:30 95浏览
  • 晶台光耦KL817和KL3053在小家电产品(如微波炉等)辅助电源中的广泛应用。具备小功率、高性能、高度集成以及低待机功耗的特点,同时支持宽输入电压范围。▲光耦在实物应用中的产品图其一次侧集成了交流电压过零检测与信号输出功能,该功能产生的过零信号可用于精确控制继电器、可控硅等器件的过零开关动作,从而有效减小开关应力,显著提升器件的使用寿命。通过高度的集成化和先进的控制技术,该电源大幅减少了所需的外围器件数量,不仅降低了系统成本和体积,还进一步增强了整体的可靠性。▲电路示意图该电路的过零检测信号由
    晶台光耦 2025-01-16 10:12 95浏览
  • 一个易用且轻量化的UI可以大大提高用户的使用效率和满意度——通过快速启动、直观操作和及时反馈,帮助用户快速上手并高效完成任务;轻量化设计则可以减少资源占用,提升启动和运行速度,增强产品竞争力。LVGL(Light and Versatile Graphics Library)是一个免费开源的图形库,专为嵌入式系统设计。它以轻量级、高效和易于使用而著称,支持多种屏幕分辨率和硬件配置,并提供了丰富的GUI组件,能够帮助开发者轻松构建出美观且功能强大的用户界面。近期,飞凌嵌入式为基于NXP i.MX9
    飞凌嵌入式 2025-01-16 13:15 188浏览
  • 实用性高值得收藏!! (时源芯微)时源专注于EMC整改与服务,配备完整器件 TVS全称Transient Voltage Suppre,亦称TVS管、瞬态抑制二极管等,有单向和双向之分。单向TVS 一般应用于直流供电电路,双向TVS 应用于电压交变的电路。在直流电路的应用中,TVS被并联接入电路中。在电路处于正常运行状态时,TVS会保持截止状态,从而不对电路的正常工作产生任何影响。然而,一旦电路中出现异常的过电压,并且这个电压达到TVS的击穿阈值时,TVS的状态就会
    时源芯微 2025-01-16 14:23 149浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 107浏览
  • 随着智慧科技的快速发展,智能显示器的生态圈应用变得越来越丰富多元,智能显示器不仅仅是传统的显示设备,透过结合人工智能(AI)和语音助理,它还可以成为家庭、办公室和商业环境中的核心互动接口。提供多元且个性化的服务,如智能家居控制、影音串流拨放、实时信息显示等,极大提升了使用体验。此外,智能家居系统的整合能力也不容小觑,透过智能装置之间的无缝连接,形成了强大的多元应用生态圈。企业也利用智能显示器进行会议展示和多方远程合作,大大提高效率和互动性。Smart Display Ecosystem示意图,作
    百佳泰测试实验室 2025-01-16 15:37 168浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 141浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 224浏览
  • 近期,智能家居领域Matter标准的制定者,全球最具影响力的科技联盟之一,连接标准联盟(Connectivity Standards Alliance,简称CSA)“利好”频出,不仅为智能家居领域的设备制造商们提供了更为快速便捷的Matter认证流程,而且苹果、三星与谷歌等智能家居平台厂商都表示会接纳CSA的Matter认证体系,并计划将其整合至各自的“Works with”项目中。那么,在本轮“利好”背景下,智能家居的设备制造商们该如何捉住机会,“掘金”万亿市场呢?重认证快通道计划,为家居设备
    华普微HOPERF 2025-01-16 10:22 173浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 123浏览
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,与汽车技术领先者法雷奥合作,采用创新的开放系统协议(OSP)技术,旨在改变汽车内饰照明方式,革新汽车行业座舱照明理念。结合艾迈斯欧司朗开创性的OSIRE® E3731i智能LED和法雷奥的动态环境照明系统,两家公司将为车辆内饰设计和功能设立一套全新标准。汽车内饰照明的作用日益凸显,座舱设计的主流趋势应满足终端用户的需求:即易于使用、个性化,并能提供符合用户生活方式的清晰信息。因此,动态环境照明带来了众多新机遇。智能LED的应用已
    艾迈斯欧司朗 2025-01-15 19:00 78浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦