一文聊聊自动驾驶中的行人轨迹预测

智驾最前沿 2022-07-26 08:30

--关注回复“40429--

领取:《汽车驾驶自动化分级》(GB/T 40429-2021)

近年来,行人轨迹预测在多个领域中受到越来越多的关注,例如自动驾驶汽车、智能交通、智慧城市等领域。行人作为交通场景中的主要参与者,对其未来运动轨迹的合理推理和预测对于自动驾驶和道路安全至关重要。在交通场景中,行人的运动轨迹不仅会受到本身意图的影响,还会受到周围行人、车辆的影响,所以行人轨迹预测是一项极具挑战性的工作。本文的内容分为三个部分,首先将论文中常用的行人轨迹预测方法进行分类,包括基于LSTM的轨迹预测方法、基于GCN网络轨迹预测方法、基于GAN网络的轨迹预测方法,接着对行人轨迹预测的难点进行探讨,最后对行人轨迹预测的发展趋势做出总结与展望。

行人轨迹预测方法

目前广泛应用在行人轨迹预测领域的方法主要包括基于LSTM网络、GCN网络和GAN网络的轨迹预测方法,这些网络在训练完成后对同类型输入具有很好的适用性,拥有较高的轨迹预测精度。下面对应用以上网络模型的方法分别展开介绍。

基于LSTM的行人轨迹预测方法

循环神经网络(Recurrent Neural Network,RNN)[1]是最早用于行人轨迹预测的模型,它通过输入和存储在历史网络中信息共同决定输出,RNN通过这种特性使其能够根据历史序列信息去预测未来值。但传统的RNN网络面临的一个缺点是会将所有历史信息都存储于网络之中,在训练时会导致大型网络产生梯度消失或者梯度爆炸。而在行人轨迹预测中,需要大量的网络节点和庞大的数据集对网络进行训练以提高预测的精度。因此传统的RNN将不能满足行人轨迹预测的需求。

为了解决RNN在复杂时序的预测问题,Hochreiter等人提出了长短时记忆网络(Long Short-Term Memory, LSTM),它是一种特殊的RNN结构,能轻松地学习到长期依赖的信息。LSTM通过增加遗忘网络层来丢弃导致错误预测结果的信息,在解决梯度消失问题的同时提升网络预测的精度。

为了将LSTM应用到行人轨迹预测的方法中,Alahi等[2]提出了一种Social LSTM网络,网络结构如图1所示。Social LSTM方法解决了以往工作中行人轨迹预测遇到的两个难点:(1)现有的模型不能通过数据驱动的方式来展示交互关系,需要手工构造函数来表现出来,导致模型只能捕捉简单的交互情景。(2)现有的轨迹预测工作中所针对的任务通常是距离很相近的情景,而没有考虑更远距离可能发生的交互问题。针对这两个难点,论文提出了一种Social LSTM模型,通过为场景中的每个行人配备一个独立的LSTM网络,用于预测其运动轨迹;通过社交池(s-pooling)层相互连接来计算周围其他行人交互产生的影响。Social LSTM填补早期工作的空白,实现了很好的行人轨迹预测效果。

图1 social lstm模型结构

Zhu等[3]提出了一种StarNet星型拓扑网络,如图2所示。通过对行人之间的全局交互建模实现高效的行人轨迹预测。该模型中Hub Network模块是基于LSTM的全局时序交互计算网络,用于获取所有行人的观察轨迹。Host Network是基于LSTM的轨迹预测网络,每个Host Network对应一个行人,通过参考描述信息对未来轨迹进行预测。在ETH和UCY数据集上,该网络在80%的场景下都优于其他算法,且实时性高。

由以上的分析可知,基于LSTM的神经网络模型主要解决行人本身对轨迹的影响问题,再根据社会交互模型的结论去修正目标预测轨迹,进而得出更加准确的预测结果。

图2 StarNet模型结构

基于GCN的行人轨迹预测方法

图卷积神经网络(Graph Convolutional Networks,GCN)是一种能对图数据进行深度学习的方法,通过使用图的边和节点数据作为输入进行学习训练。在行人轨迹预测领域,GCN通过加入时空数据进行行人轨迹预测,因而能够理解行人行为从而加快社交互动的建模进度,所以GCN在轨迹预测方向有很大的应用前景。

为了将GCN应用到行人轨迹预测的工作中,Shi等[4]提出一种用于行人轨迹预测的稀疏图卷积网络模型(SGCN),解决了行人密集无向交互中存在的建模冗余和忽略轨迹运动趋势的问题。模型框架如图3所示,通过使用稀疏有向空间图对稀疏有向交互进行建模,以捕获自适应交互行人;使用稀疏有向时间图来建模运动趋势,便于对观测方向进行预测。将上述两种稀疏图融合在一起,推算出用于轨迹预测的双高斯分布参数进行轨迹预测,最终在ETH和UCY数据集上实现了精准的行人轨迹预测结果。

图3 GCN网络架构

Bae等[5]研究了基于社会关系的行人轨迹预测,针对现有轨迹预测方法过多估计行人个体的社会力量,无法解决过度避碰的问题,提出了一种用于社会纠缠行人轨迹预测的解耦多关系图卷积网络(DMRGCN),模型框架如图4所示。该模型中通过解耦的多尺度聚合区分相关的行人,使用多关系的GCN提取场景中复杂的社会交互行为,模型中加入全局的时间聚合函数用于补偿因过度避撞而累积的误差。实验结果在平均位移误差(ADE)和最终位移误差(FDE)上分别超过了最先进的方法,实现了准确的预测效果。

由上述论文的分析可知,GCN网络主要是将行人社交模型加入到预测模型之中,对行人历史轨迹进行优化处理,进而提升预测速度和预测精度,从而实现准确预测行人轨迹的目的。其缺点是不能够单独使用完成轨迹预测任务。

图4 DMRGCN网络架构

基于GAN的行人轨迹预测方法

生成式对抗网络(GAN, Generative Adversarial Networks)是一种无监督学习的深度学习模型,主要结构由两部分组成:生成器,用于学习数据的分布并生成相似的数据。鉴别器,计算来自真实数据的可能性,并将其分类为真实或虚假。GAN通过生成器和鉴别器的相互博弈来达到使网络相互学习的目的。在行人轨迹预测中加入GAN网络,可以解决过去仅能预测一条“最优”轨迹的缺陷,此网络能够预测多条可行的轨迹并通过博弈的思想进一步优化预测精度。

Gupta等[6]首次将GAN的对抗思想引入行人运动轨迹预测的任务中,提出一种Social GAN的轨迹预测方法。该网络将LSTM用作“运动编码器模块”处理时间信息,并采用“位置编码器模块”对空间交互进行建模,结合来自序列预测和生成对抗网络的工具来解决行人轨迹预测问题。模型结构如图5所示。

图5 Social GAN网络架构

由于GAN网络易受模式崩溃和模式下降的影响,Amirian等[7]提出了Social Way网络模型,通过加入info-GAN来改进多模式轨迹预测,避免GAN出现的问题,模型框架如图6所示。该模型是继Social LSTM、Social GAN模型之后的进一步提升,在理想的监控俯瞰数据库ETH、UCY上进行数据的预测,通过引入注意力机制使模型自主分配对交互信息的关注,并且模型结构上舍弃了L2代价函数,引入基于互信息的Information Loss,使得网络在多模态行人轨迹预测上有着良好的训练效果。

图6 Social Way模型框架

GAN网络能够在行人轨迹预测方面实现较好的预测效果,但也会存在一些缺点影响其网络性能。比如,(1)网络训练不稳定,容易出现梯度消失、模式崩溃等问题,进而造成生成结果较差。(2)GAN训练时需要达到纳什均衡才能够拥有良好的预测精度,若不满足则会导致网络不收敛。(3)由于网络训练过程中没有使用损失函数,造成我们对当前的训练效果处于一个未知的状态,如果网络训练过程中出现生成器退化现象,则网络将无法继续训练。

行人轨迹预测难点

目前最先进的论文方法中,对行人轨迹的预测会出现预测结果不准确的现象。结合论文进行分析可知,造成行人轨迹预测不准确的难点主要包括以下两个方面:

(1)行人运动方式灵活多变,预测其轨迹难度较大。

在现实中,相对于自行车、汽车等运动学模型,行人运动更加灵活,例如正在加速奔跑的行人可能会突然停止下来或者突然掉头再跑等动作,因此很难对行人建立合理的动力学模型,进而增加了行人轨迹预测的难度。

(2)行人之间的交互关系复杂且抽象,很难精确地进行建模。

行人轨迹往往不仅仅由行人本身的意图决定,很多时候也受周围行人的影响。在实际场景中,某一行人未来的运动不仅受自己意图支配,同样也受周围行人的影响。这种交互关系在算法中往往很难精确地建模出来。目前,大部分算法都是用相对空间关系来进行建模,例如相对位置、相对朝向、相对速度大小等。

常规算法模型的实现是找到一个输入到输出的函数映射,对于轨迹预测的模型来说,其对应着一个序列到另一个序列的映射,常规的模型或训练方式容易使模型预测结果陷入平均状态(预测结果倾向于预测一种折中的轨迹),显然使用常规的训练模型无法很好地对行人轨迹进行有效的预测。

本文对近年来行人轨迹预测领域部分最先进的方法进行了分类,并对不同的方法的优缺点进行了总结。结合轨迹预测的发展趋势可以看出,基于神经网络的行人轨迹预测算法能够实现较好的预测效果,也是论文中使用较为普遍的方法。而在实际场景的应用过程中,需要同时保证轨迹预测算法运行的高效性及识别的高精度性,在当前领域内轨迹预测技术在实际场景应用中还存在部分难点需要去克服。

轨迹预测技术在最近几年发展速度较快,伴随着传感器技术的不断发展,达到一个更加精准的行人轨迹预测更加易于实现。未来的发展中,相信轨迹预测技术走进实际生活的距离不会太遥远。

参考文献

[1] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[J]. arXiv preprint arXiv:1409.0473, 2014.

[2] Alahi A, Goel K, Ramanathan V, et al. Social lstm: Human trajectory prediction in crowded spaces[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 961-971.

[3] Zhu Y, Qian D, Ren D, et al. Starnet: Pedestrian trajectory prediction using deep neural network in star topology[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 8075-8080.

[4] Shi L, Wang L, Long C, et al. SGCN: Sparse graph convolution network for pedestrian trajectory prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 8994-9003.

[5] Bae I, Jeon H G. Disentangled multi-relational graph convolutional network for pedestrian trajectory prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(2): 911-919.

[6] Gupta A, Johnson J, Fei-Fei L, et al. Social gan: Socially acceptable trajectories with generative adversarial networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 2255-2264.

[7] Amirian J, Hayet J B, Pettré J. Social ways: Learning multi-modal distributions of pedestrian trajectories with gans[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2019: 0-0.

转载自智车科技,文中观点仅供分享交流,不代表本公众号立场,如涉及版权等问题,请您告知,我们将及时处理。

-- END --

智驾最前沿 「智驾最前沿」深耕自动驾驶领域技术、资讯等信息,解读行业现状、紧盯行业发展、挖掘行业前沿,致力于助力自动驾驶发展与落地!公众号:智驾最前沿
评论 (0)
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 304浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 260浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 324浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 230浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 485浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 374浏览
  • 一、智能家居的痛点与创新机遇随着城市化进程加速,现代家庭正面临两大核心挑战:情感陪伴缺失:超60%的双职工家庭存在“亲子陪伴真空期”,儿童独自居家场景增加;操作复杂度攀升:智能设备功能迭代导致用户学习成本陡增,超40%用户因操作困难放弃高阶功能。而WTR096-16S录音语音芯片方案,通过“语音交互+智能录音”双核驱动,不仅解决设备易用性问题,更构建起家庭成员间的全天候情感纽带。二、WTR096-16S方案的核心技术突破1. 高保真语音交互系统动态情绪语音库:支持8种语气模板(温柔提醒/紧急告警
    广州唯创电子 2025-04-28 09:24 194浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 317浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 272浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 275浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 180浏览
  •  探针台的维护直接影响其测试精度与使用寿命,需结合日常清洁、环境控制、定期校准等多维度操作,具体方法如下:一、日常清洁与保养1.‌表面清洁‌l 使用无尘布或软布擦拭探针台表面,避免残留清洁剂或硬物划伤精密部件。l 探针头清洁需用非腐蚀性溶剂(如异丙醇)擦拭,检查是否弯曲或损坏。2.‌光部件维护‌l 镜头、观察窗等光学部件用镜头纸蘸取wu水jiu精从中心向外轻擦,操作时远离火源并保持通风。3.‌内部防尘‌l 使用后及时吹扫灰尘,防止污染物进入机械滑
    锦正茂科技 2025-04-28 11:45 123浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 197浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦