【Go实现】实践GoF的23种设计模式:观察者模式

原创 元闰子的邀请 2022-07-23 18:58

上一篇:【Go实现】实践GoF的23种设计模式:装饰者模式

简单的分布式应用系统(示例代码工程):https://github.com/ruanrunxue/Practice-Design-Pattern--Go-Implementation

简介

现在有 2 个服务,Service A 和 Service B,通过 REST 接口通信;Service A 在某个业务场景下调用 Service B 的接口完成一个计算密集型任务,假设接口为 http://service_b/api/v1/domain;该任务运行时间很长,但 Service A 不想一直阻塞在接口调用上。为了满足 Service A 的要求,通常有 2 种方案:

  1. Service A 隔一段时间调用一次 Service B 的接口,如果任务还没完成,就返回 HTTP Status 102 Processing;如果已完成,则返回 HTTP Status 200 Ok。

  2. Service A 在请求 Service B 接口时带上 callback uri,比如 http://service_b/api/v1/domain?callbackuri=http://service_a/api/v1/domain,Service B 收到请求后立即返回 HTTP Status 200 Ok,等任务完成后再调用 Service A callback uri 进行通知。

方案 1 须要轮询接口,轮询太频繁会导致资源浪费,间隔太长又会导致任务完成后 Service A 无法及时感知。显然,方案 2 更加高效,因此也被广泛应用。

方案 2 用到的思想就是本文要介绍的观察者模式Observer Pattern),GoF 对它的定义如下:

Define a one-to-many dependency between objects so that when one object changes state, all its dependents are notified and updated automatically.

我们将观察者称为 Observer,被观察者(或主体)称为 Subject,那么 Subject 和 Observer 是一对多的关系,当 Subject 状态变更时,所有的 Observer 都会被通知到。

UML 结构

场景上下文

在 简单的分布式应用系统(示例代码工程)中,应用之间通过 network 模块来通信,其中通信模型采用观察者模式:

从上图可知,App 直接依赖 http 模块,而 http 模块底层则依赖 socket 模块:

  1. 在 App2 初始化时,先向 http 模块注册一个 request handler,处理 App1 发送的 http 请求。
  2. http 模块会将 request handler 转换为 packet handler 注册到 socket 模块上。
  3. App 1 发送 http 请求,http 模块将请求转换为 socket packet 发往 App 2 的 socket 模块。
  4. App 2 的 socket 模块收到 packet 后,调用 packet handler 处理该报文;packet handler 又会调用 App 2 注册的 request handler 处理该请求。

在上述 socket - http - app 三层模型 中,对 socket 和 http,socket 是 Subject,http 是 Observer;对 http 和 app,http 是 Subject,app 是 Observer。

代码实现

因为在观察者模式的实现上,socket 模块和 http 模块类似,所以,下面只给出 socket 模块的实现:

// demo/network/socket.go
package network

// 关键点1: 定义Observer接口
// SocketListener Socket报文监听者
type SocketListener interface {
  // 关键2: 为Observer定义更新处理方法,入参为相关的上下文对象
 Handle(packet *Packet) error
}

// Subject接口
// Socket 网络通信Socket接口
type Socket interface {
 // Listen 在endpoint指向地址上起监听
 Listen(endpoint Endpoint) error
 // Close 关闭监听
 Close(endpoint Endpoint)
 // Send 发送网络报文
 Send(packet *Packet) error
 // Receive 接收网络报文
 Receive(packet *Packet)
 // AddListener 增加网络报文监听者
 AddListener(listener SocketListener)
}

// 关键点3: 定义Subject对象
// socketImpl Socket的默认实现
type socketImpl struct {
  // 关键点4: 在Subject中持有Observer的集合
 listeners []SocketListener
}

// 关键点5: 为Subject定义注册Observer的方法
func (s *socketImpl) AddListener(listener SocketListener) {
 s.listeners = append(s.listeners, listener)
}

// 关键点6: 当Subject状态变更时,遍历Observers集合,调用它们的更新处理方法
func (s *socketImpl) Receive(packet *Packet) {
 for _, listener := range s.listeners {
  listener.Handle(packet)
 }
}

...

总结实现观察者模式的几个关键点:

  1. 定义 Observer 接口,上述例子中为 SocketListener 接口。
  2. 为 Observer 接口定义状态更新的处理方法,其中方法入参为相关的上下文对象。上述例子为 Handle 方法,上下文对象为 Packet
  3. 定义 Subject 对象,上述例子为 socketImpl 对象。当然,也可以先将 Subject 抽象为接口,比如上述例子中的 Socket 接口,但大多数情况下都不是必须的。
  4. 在 Subject 对象中,持有 Observer 接口的集合,上述例子为 listeners 属性。让 Subject 依赖 Observer 接口,能够使 Subject 与具体的 Observer 实现解耦,提升代码的可扩展性
  5. 为 Subject 对象定义注册 Observer 的方法,上述例子为 AddListener 方法。
  6. 当 Subject 状态变更时,遍历 Observer 集合,并调用它们的状态更变处理方法,上述例子为 Receive方法。

扩展

发布-订阅模式

与观察者模式相近的,是发布-订阅模式Pub-Sub Pattern),很多人会把两者等同,但它们之间还是有些差异。

从前文的观察者模式实现中,我们发现 Subject 持有 Observer 的引用,当状态变更时,Subject 直接调用 Observer 的更新处理方法完成通知。也就是,Subject 知道有哪些 Observer,也知道 Observer 的数量:

在发布-订阅模式中,我们将发布方称为 Publisher,订阅方称为 Subscriber,不同于观察者模式,Publisher 并不直接持有 Subscriber 引用,它们之间通常通过 Broker 来完成解耦。也即,Publisher 不知道有哪些 Subscriber,也不知道 Subscriber 的数量:

发布-订阅模式被广泛应用在消息中间件的实现上,比如 Apache Kafka 基于 Topic 实现了发布-订阅模式,发布方称为 Producer,订阅方称为 Consumer。

下面,我们通过 简单的分布式应用系统(示例代码工程)中的 mq 模块,展示一个简单的发布-订阅模式实现,在该实现中,我们将 Publisher 的 produce 方法和 Subscriber 的 consume 方法都合并到 Broker 中:

// demo/mq/memory_mq.go

// 关键点1: 定义通信双方交互的消息,携带topic信息
// Message 消息队列中消息定义
type Message struct {
 topic   Topic
 payload string
}

// 关键点2: 定义Broker对象
// memoryMq 内存消息队列,通过channel实现
type memoryMq struct {
  // 关键点3: Broker中维持一个队列的map,其中key为topic,value为queue,go语言通常用chan实现。
 queues sync.Map // key为Topic,value为chan *Message,每个topic单独一个队列
}

// 关键点4: 为Broker定义Produce方法,根据消息中的topic选择对应的queue发布消息
func (m *memoryMq) Produce(message *Message) error {
 record, ok := m.queues.Load(message.Topic())
 if !ok {
  q := make(chan *Message, 10000)
  m.queues.Store(message.Topic(), q)
  record = q
 }
 queue, ok := record.(chan *Message)
 if !ok {
  return errors.New("model's type is not chan *Message")
 }
 queue <- message
 return nil
}

// 关键点5: 为Broker定义Consume方法,根据topic选择对应的queue消费消息
func (m *memoryMq) Consume(topic Topic) (*Message, error) {
 record, ok := m.queues.Load(topic)
 if !ok {
  q := make(chan *Message, 10000)
  m.queues.Store(topic, q)
  record = q
 }
 queue, ok := record.(chan *Message)
 if !ok {
  return nil, errors.New("model's type is not chan *Message")
 }
 return <-queue, nil
}

客户端使用时,直接调用 memoryMq 的 Produce 方法和 Consume 方法完成消息的生产和消费:

// 发布方
func publisher() {
 msg := NewMessage("test""hello world")
 err := MemoryMqInstance().Produce(msg)
 assert.Nil(t, err)
}

// 订阅方
func subscriber() {
 result, err := MemoryMqInstance().Consume("test")
 assert.Nil(err)
 assert.Equal(t, "hello world", result.payload)
}

总结实现发布-订阅模式的几个关键点:

  1. 定义通信双方交互的消息,携带 topic 信息,上述例子为 Message 对象。
  2. 定义 Broker 对象,Broker 是缓存消息的地方,上述例子为 memoryMq 对象。
  3. 在 Broker 中维持一个队列的 map,其中 key 为 topic,value 为 queue,go 语言通常用 chan 来实现 queue,上述例子为 queues 属性。
  4. 为 Broker 定义 produce 方法,根据消息中的 topic 选择对应的 queue 发布消息,上述例子为 Produce方法。
  5. 为 Broker 定义 consume 方法,根据 topic 选择对应的 queue 消费消息,上述例子为 Consume 方法。

Push 模式 VS Pull 模式

实现观察者模式和发布-订阅模式时,都会涉及到 Push 模式或 Pull 模式的选取。所谓 Push 模式,指的是 Subject/Publisher 直接将消息推送给 Observer/Subscriber;所谓 Pull 模式,指的是 Observer/Subscriber 主动向 Subject/Publisher 拉取消息:

Push 模式和 Pull 模式的选择,取决于通信双方处理消息的速率大小

如果 Subject/Publisher 方生产消息的速率要比 Observer/Subscriber 方处理消息的速率小,可以选择 Push 模式,以求得更高效、及时的消息传递;相反,如果 Subject/Publisher 方产生消息的速率要大,就要选择 Pull 模式,由 Observer/Subscriber 方决定消息的消费速率,否则可能导致 Observer/Subscriber 崩溃。

Pull 模式有个缺点,如果当前无消息可处理,将导致 Observer/Subscriber 空轮询,可以采用类似 Kafka 的解决方案:让 Observer/Subscriber 阻塞一定时长,让出 CPU,避免长期无效的 CPU 空转

典型应用场景

  • 需要监听某个状态的变更,且在状态变更时,通知到监听者。
  • web 框架。很多 web 框架都用了观察者模式,用户注册请求 handler 到框架,框架收到相应请求后,调用 handler 完成处理逻辑。
  • 消息中间件。如 Kafka、RocketMQ 等。

优缺点

优点

  • 消息通信双方解耦。观察者模式通过依赖接口达到松耦合;发布-订阅模式则通过 Broker 达到解耦目的。

  • 支持广播通信。

  • 可基于 topic 来达到指定消费某一类型消息的目的。

缺点

  • 通知 Observer/Subscriber 的顺序是不确定的,应用程序不应该依赖通知顺序来保证业务逻辑的正确性。
  • 广播通信场景,需要 Observer/Subscriber 自己去判断是否需要处理该消息,否则容易导致 unexpected update

与其他模式的关联

观察者模式和发布-订阅模式中的 Subject 和 Broker,通常都会使用 单例模式 来确保它们全局唯一。

文章配图

可以在 用Keynote画出手绘风格的配图 中找到文章的绘图方法。

参考

[1] 【Go实现】实践GoF的23种设计模式:SOLID原则, 元闰子

[2] 【Go实现】实践GoF的23种设计模式:单例模式, 元闰子

[3] Design Patterns, Chapter 5. Behavioral Patterns, GoF

[4] 观察者模式, refactoringguru.cn

[5] 观察者模式 vs 发布订阅模式, 柳树

更多文章请关注微信公众号:元闰子的邀请


评论
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 71浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 181浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 98浏览
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 122浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 75浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 89浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 166浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 117浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 48浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 101浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 87浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 171浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 84浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦