10uF/1uF/100nF三个旁路电容值的应用神话还适用吗?

凡亿PCB 2022-07-20 09:00

今天的许多设计都包括三个不同值的去耦电容器,或者当只使用一个电容器时,可以使用 0.1 uF 这样的小值。这些建议基于 50 年前不适用的假设。是时候重新考虑这些过时的遗留设计指南了。


作为遗留问题的神话

从一开始,电子行业就被更快、更小、更便宜、现在的四种力量拉向未来。这推动了技术、材料、制造和设计方面的革命性和进化性发展的不断进步。有时,我们在上一代采用的设计原则在下一代变成“遗留代码”,不再适用。适用于一种互连技术组合的方法可能不适用于新的组合。遗留设计指南成为一个神话,应该重新评估。


唯一不变的是变化

我们的行业见证了从电子管、晶体管、集成电路到封装系统的革命性进步。我们经历了从离散布线到单层和双层印刷电路板,再到多层板,再到 HDI 技术的革命性进步。我们已经看到了从早期通孔器件(例如简单的金属罐封装到 DIP 到大型针栅阵列)到带引线框架的表面贴装封装到小型有机印刷电路基板到球栅阵列到芯片级封装的革命性进步,以及多芯片模块。。图 1显示了四个具有代表性的技术代板和封装的时间快照

图1 四个时间快照。

从左到右:管子和分立线、管子和电路板、分立晶体管和电路板,以及带有多层电路板的表面贴装 BGA 封装。


技术世代对设计的影响

信号如何与互连交互背后的基本原则没有改变。它们仍然基于具有 150 年历史的麦克斯韦方程组。然而,随着每一代封装和互连技术的发展,我们如何实施设计原则并将其转化为设计指南已经发生了变化。

在使用离散布线的管子的早期,互连通常是透明的。当互连很重要时,首先要解决的问题通常是由于大环路电感引起的串扰。“越短越好”的设计原则以及捆绑在一起的电源线和地线很受欢迎。

当引入多层板时,这些遗留代码中的一些继续将电源和接地路由为离散线,而不是使用接地层。将电源和接地紧密捆绑在一起的传统阻碍了一些早期设计中接地层的实施。

随着时钟频率升至 20 MHz 以上,传输线效应开始占据主导地位,受控阻抗、布线拓扑和端接策略成为互连设计的重要驱动力。“越短越好”的遗留代码导致人们不愿使用菊花链路由拓扑,这可能会导致路径长度更长但反射噪声更低。

当我们进入 1 Gbps 状态时,损耗变得很重要,我们开始选择除了常见的基于环氧玻璃的材料之外的其他材料,以降低损耗。当使用这些低损耗层压板时,我们发现超过 5 Gbps 的铜损耗比预期的要高,我们发现更光滑的铜更好。超过 10 Gbps 时,我们发现 50 年前的玻璃纤维增强电路板制造方法导致了玻璃或纤维编织歪斜的新问题。

有了新技术,我们需要新的设计规则。高剥离强度、环氧树脂玻璃电路板的旧规则不一定是千兆互连时代的最佳设计指南。


专家指南

我们每天在我们的电子产品中应用的设计指南是由行业领导者制定的。这些公司在信号完整性、电源完整性、EMC、材料、制造、可靠性和集成方面拥有专门的专家,他们正在推出最前沿的产品。这些专家应用基本原则为他们引入的新材料、IC 技术和互连技术建立设计指南。

但有时,在一代技术中起作用的东西在下一代中变成了神话。由于这些设计规则是由专家制定的,因此业界其他人有时不愿意放弃旧的设计指南,并继续在可能不适用的新一代技术中使用它们。它们成为我们工具箱中根深蒂固的神话。

如果最后一个设计遵循这些旧的设计指南,人们通常认为这是因为设计指南,即使它可能不顾它们。有时遗留代码是中性的,有时它有缺点。即使它是中立的,如果它阻止建立更好的设计指南,它也会变成负面的。它变成了一个即将被取代的神话。

设计指南神话,例如每个电源引脚使用三个不同的电容器进行去耦,这会降低下一代设计的性能,因此应始终重新评估。


高频电容器

当安装电感大于约 1 nH 时,一个简单的串联 RLC 电路可以很好地描述真实电容器的理想等效电路模型。当它低于 1 nH 时,会出现新的效果,真实电容器的传输线模型更匹配。

简单的 RLC 模型适用于大多数代的电容器。图 2显示了实际 SMT、MLCC 电容器的测量阻抗和理想 RLC 串联电路的模拟阻抗的示例 。

图2 真实 SMT 电容器的测量阻抗(蓝色)和相位以及简单 RLC 电路模型的模拟阻抗(红色)示例。

测量相位和模拟相位的差异表明实际电容器中的 ESR 行为不包括在简单的 RLC 模型中。

该系列 RLC 电路模型是最简单的模型,通常适用于电解、钽、陶瓷、MLCC 电容器的技术范围,无论是通孔还是表面贴装。这只是一阶模型,许多实际电容器可以与二阶模型更好地匹配。但第一个模型提供了对这三个重要术语的作用的洞察。

理想的 C 对应于低频下的阻抗行为。R 通常被称为等效串联电阻 (ESR)。这是由于实际电容器的引线、极板的金属化,以及在较小程度上,电容器中的其他损耗机制。L 称为等效串联电感 (ESL)。这主要是由于电容器的内部结构及其电路板电源和接地路径到它所连接的 IC 引脚。

在通孔电容器时代,从 50 多年前开始,两种常用的电容器技术是电解和陶瓷盘。这些示例 如图 3所示。

图3 电解和陶瓷圆盘电容器的例子。

较小物理尺寸的电容器具有较小的电容、较小的 ESL 和较大的 ESR。

在电解电容器和陶瓷圆盘电容器技术中,可以在电容器中设计的电容数量与其物理尺寸和引线长度之间存在直接联系。较大的电容值意味着较大的物理尺寸电容器。

因为 ESL 还取决于电容器的物理尺寸及其引线长度,所以较大值的电容器也具有较大的 ESL。例如,47 uF 电解电容器的 ESL 可能高达 30 nH,而小型 0.1 uF 圆盘电容器的 ESL 可能低至 7 nH。

甚至 ESR 也因电容器技术和尺寸而异。电解电容器的 ESR 可能在 0.1 到 5Ω 的量级。较小尺寸的电容器通常具有较高的 ESR。陶瓷圆盘电容器的 ESR 约为 0.1 至 1Ω。

电容值和 ESL 之间的这种联系极大地影响了大电容和小电容的阻抗分布。在低频下,真实电容器的阻抗与其电容有关。在高频下,真实电容器的阻抗大约是其引线电感。 图 4 显示了具有三种不同阻抗曲线的三种不同电容器的示例。他们的一阶模型的组件值可能是:

图4 这三个电容器的模拟阻抗曲线。最小值提供高频下的低阻抗

对于带引线的通孔电容器,通常正确的是,较小值的电容器尺寸较小,并且可以安装较低的环路电感。这意味着它们在较高频率下将具有较低的阻抗。在寻找高频下阻抗低的通孔电容器时,应选择小值和小尺寸的电容器。

这就是为什么小值电容器通常被称为“高频”电容器的原因。由于它们的引线较短,如果以低回路电感安装到电路板上,它们在高频时提供最低阻抗。

如果我们想要低频时的最低阻抗以及高频时的最低阻抗,通常的做法是并联添加两个或三个电容器。大容量电容器在低频时提供低阻抗,而具有较低 ESL 的小容量电容器在高频时提供低阻抗。并行组合充分利用了两种配置的优点。


MLCC电容器与高频电容器的神话

当我们改用基于MLCC表面贴装技术的电容器时,电容器的特性与引线电容器有很大的不同。 图 5 显示了 1206 型 MLCC 电容器的示例,其电容值对应于相应陶瓷盘电容器中的相同电容。

图5 个 1206 封装的 MLCC 电容器(顶部)和相应值的陶瓷圆盘电容器。

通常,可以在完全相同的机身尺寸中获得大范围的电容值。0402 中的 10 uF 与 0.01 uF 一样容易。这意味着 MLCC 电容器的 ESL 如果以最佳方式集成到电路板中,将与其电容值无关。

事实上,使用低环路电感设计,MLCC 的 ESL 可以设计为小于 1 nH,即使在两层电路板上也是如此。图 6显示了在具有 0.620 nH ESL 的两层 063 mil 厚板上测得的 1 uF MLCC 电容器的阻抗曲线示例 。

图 6 电路板上 1 uF MLCC 电容器的测量阻抗曲线示例,电路板上的 ESL 为 0.620 nH。

这也表明当安装电感小于 1 nH 时需要二阶模型。测量由Picotest提供。

10 和 0.1 uF MLCC 电容器将具有完全相同的高频阻抗。电容值较小的电容不再是“高频”电容。事实上,一个 10 uF 的 MLCC 电容也将是一个“高频”电容。

如果设计中具有低 ESL 的价值,则应始终使用 MLCC 电容器。即使是 10 uF MLCC 电容器,其 ESL 和“高频”陶瓷圆盘电容器的阻抗也可能低于 10%。

在较旧的产品中,当使用通孔电容器时,较小的电容值具有较低的 ESL 和较高频率下的较低阻抗。当电路板上的电源引脚上只有一个电容器的空间并且来自该引脚的瞬态电流很小时,指定了一个具有低电感的单个“高频”电容器。这是一个低值电容,通常为 0.1 uF。

当一个引脚有三个电容器的空间时,通常会指定三个电容器值的范围。与仅一个值电容器相比,这提供了在高频下的较低阻抗和在低频下的较低阻抗。 图 7 是显示这些常见规格的典型示意图示例。

图7 一个典型电路示例,显示了具有三个不同电容值和一个小值单个电容的去耦网络。

但是,此原理图示例并非来自使用通孔部件和通孔电容器的旧设计,而是来自 120 MHz 前沿 Cortex M4 微控制器板,全部采用 MLCC 电容器设计和组装。高频电容器的神话已经延续到这个设计中,因为它在许多其他设计中仍然指定一个小值电容器用作单个电容器和三个不同的值用于更高电流的引脚。

高频电容器和使用三种不同电容器值的神话是许多现代设计中仍然存在的遗留代码。


哪个更好?

那么,哪个更好:三个电容值相差十倍还是三个电容值相同?

不幸的是,只有具有所有元素的准确模型的系统级分析才有机会回答这个问题。

如果规范中的建议是使用三种不同值的电容器,那么编写规范的工程师很有可能从未做过任何分析,而是使用了基于高频电容器神话的 50 年历史的设计指南。随着 20 年前 MLCC 电容器的推出,该建议背后的理由消失了。怀疑 PDN 设计。

在这种情况下,您使用什么可能并不重要。尽管有电容值,您的产品也可能工作,但可能不是因为它们。

当三个具有相同ESL的不同值的电容器并联组合时,在它们的自谐振频率之间会产生两个并联谐振峰。峰值阻抗值与相邻电容器的电容和电感以及电容器的ESR有关。

图 8 显示了三个电容器的三种不同组合的模拟阻抗曲线。一种组合是建议在通孔技术中实现 10、1 和 0.1 uF。第二个是在 MLCC 电容器技术中实现的相同组合。第三种组合都是相同的 10 uF MLCC 电容器。MLCC 电容器的 ESL 为 1 nH。

图 8 三个不同和三个相同 MLCC 电容器的模拟阻抗曲线。

与三个不同值的电容器相比,三个相同大值的电容器值可能会在整个频谱上提供更低的阻抗(并且在中频处没有并联谐振峰值),但这并不意味着它是一个更稳健的解决方案。

最后一个产品可能有效,但您可能不知道该设计有多健壮,或者某些无法追踪、不可重现的故障是否可能是由于过度的开关噪声以及恰到好处的数据模式收敛而导致的并联谐振时的阻抗。

不要误以为三个不同值的电容器是一种稳健的策略,或者三个电容器的值都相同更稳健。如果没有系统级分析,它们都可能同样可接受、同样边缘化或因相同故障而失败。


“测试”质量

如果您不打算进行自己的系统级分析,请计划实施彻底的测试计划,以便您可以找到 PDN 中的薄弱环节并“测试质量”。

完整的测试计划的一部分是为 PDN 中的测试进行设计。例如,使用高带宽感测线表征噪声(不仅在板级,而且在管芯的焊盘上)越好,您就越能够将一种去耦策略与另一种去耦策略进行比较。 图 9 是在 I/O 切换时在芯片电源轨和板级上测得的电压噪声示例。在 5 V 电压轨上,片上电压噪声为 600 mV 峰峰值。板级电压噪声仅为 75 mV 峰峰值。

图9 在芯片上相同的电源轨上测量的电压噪声是通过检测线测量的,在电路板上,两者的标度相同,均为 200 mV/div

无论应用如何,较低的安装回路电感总是有价值的。这就是为什么 MLCC 去耦电容器应始终是放置在板上的第二个组件,因此它们可以以实际最低的安装电感进行布线。

如果在一个引脚上只指定一个电容器,这是许多低电流应用的常见做法,那么在可接受的额定电压下,始终使用允许的最大电容,以实现最小的实际尺寸。如果没有系统级分析,这仍然不能保证产品的稳健性,因此必须制定全面的测试计划。


设计质量:正确的去耦电容策略

使用三种不同值的去耦电容器是基于过时的假设,即小值电容器是“高频”电容器。在我们的 MLCC 电容器时代,这个假设不适用,有什么更好的建议?不幸的是,答案是“视情况而定”。

但是,有一些适用于大多数系统的通用设计指南。

任何 PDN 的目标都是为那些需要它的组件提供直流电压,并为应用提供可接受的噪声水平。用于去耦的 MLCC 电容器只是良好 PDN 策略的一部分。

PDN 设计的基本原则之一是保持阻抗分布,如 IC 的焊盘所见,阻抗平坦且值可接受的低。这意味着通常通过增加更多电容来减少并联谐振峰值,减少环路电感,并通过使用不同的电容值或通过受控的 ESR(这将降低峰值的 q 因子)来塑造阻抗曲线。

这有时会转化为足够的大容量电容,从而降低 VRM 大容量电容器的峰值。在高频端,板级的平坦阻抗分布将有助于抑制片上电容和封装引线电感并联谐振峰值的班迪尼山。

选择电容器值需要进行系统级分析,包括一端的 VRM 和另一端的消耗元件。当您设计所有安装功能以尽可能减少电容器的环路电感时,使用 3D 仿真器和基于测量的建模工具为 PDN 元件开发准确的模型以仿真整个系统总是很有价值的。VRM 的准确模型以及每个导轨和封装引线电感的片上电容是设计稳健设计的整体分析的一部分。

当存在相当大的封装去耦时,大容量电容器和 MLCC 电容器的低频特性更为重要。当片上电容和封装引线电感占主导地位时,从它们的并联谐振中产生一个大的班迪尼山,从板级 MLCC 电容器产生的平坦阻抗分布中进行阻尼是很重要的。

不幸的是,除了使用受控 ESR 电容器之外,仅三个电容器值的组合不会为 Bandini Mountain 提供板级的任何阻尼。

这只是对真正进入优化的、具有成本效益的解耦策略的一些设计驱动力的一瞥。第一步是识别问题。第二步是确定问题的根本原因,第三步是确定提供可接受噪声的整体 PDN 设计策略,其中优化的解耦策略只是其中的一部分。

当系统的目标阻抗差异超过六个数量级时,从许多物联网应用中的超过 10Ω 到基于大型网络处理器的产品中的小于 10 uOhms,没有一种具有成本效益的策略,而是许多。

但这是一个不同章节的故事。


概括

使用三种不同电容器值的起源是基于使用通孔引线电容器。较小电容值的电容器通常在高频下具有较低的 ESL 和较低的阻抗。对于通孔电容器,使用三种不同的电容器值具有性能优势。

但是对于使用了 20 多年的 MLCC 电容器,这些陈旧的传统设计指南不再适用。

当只指定一个或三个电容器用于去耦时,可能是因为没有对设计进行分析。相反,在上一个设计中起作用的是在下一个设计中推荐的。尽管使用了三个不同的值,并且很有可能,该设计作品在使用所有三个相同的值时同样有效。在这种情况下,您的设计的稳健性是“测试”而不是“设计”。

最好的方法是始终进行自己的分析,包括配电系统的其余部分,以及所有组件的准确模型(如果可用),因为它们正在安装到您的系统中。

如果您的设计指定了三种不同的电容值,您可能会遵循已沿用 20 多年的传统设计指南。可能是时候为您的下一个设计重新考虑该设计指南并进行自己的分析了。

声明:

本文转载自电子资料库,如涉及作品内容、版权和其它问题,请于联系工作人员微(prrox66),我们将在第一时间和您对接删除处理!
投稿/招聘/广告/课程合作/资源置换 请加微信:13237418207

三极管三态分析


夏不为利,弟子周狂欢来袭!尊享豪礼直接送!


扫码添加客服微信,备注“入群”拉您进凡亿教育官方专属技术微信群,与众位电子技术大神一起交流技术问题及心得~

分享💬 点赞👍 在看❤️ “三连”支持!
凡亿PCB 分享高速PCB设计、硬件设计、信号仿真、天线射频技术,提供技术交流、资料下载、综合提升电子应用开发能力!创立“凡亿教育”,致力做电子工程师的梦工厂,旨在赋能大学生、初中级电子工程师,倾力打造电子设计精品教育,逐步发展成系统
评论
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 110浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 103浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 85浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 141浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 114浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 96浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 92浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 170浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 184浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 126浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 142浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 107浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 143浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 138浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 186浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦